Microfinance in developed countries

Renaud Bourlès (Centrale Marseille & AMSE)

Advanced Topics in Finance

April 2019

The impact of risk-sharing on risk-taking behaviour:

- Informal insurance (or mutual insurance or partnership)
 - how to deal w/ asymmetric information
 - the motive of sharing (altruism vs reciprocity)
 - network effects
- Financial regulation
 - the impact of cross-shareholding on portfolio choices
 - the role of capital requirement
 - network effects
- Microcredit in developed countries
 - state intervention to enhance risk-taking
 - impact on behaviour (of banks & borrowers)
 - it is worth it?

Microcredit in developed countries

- Why is it important/useful?
 - financial exclusion
 - externalities on social expenses
- Different from microcredit in developing countries?
 - individual loans
 - mostly non-for-profit
 - highly regulated
- Public intervention / subsidies key
 - what is the best form? (normative)
 - is it worth it? (positive)

Financial exclusion

Measured as the absence of any transaction account

- concerned \sim 12% of pop. in EU-27 countries in 2008 (source: Eurostat, EU-SILC 2008)
- only 0.3% in France, and 0.4% in Germany
- but e.g. 17% in Ireland and 19% in Italy (83% in Bulgaria)

When it comes to credit (same source)

- 40% of pop. in EU-27 countries in 2008
- live in households with no credit card, or outstanding loan
- no data for France, 27.8% in Germany
- 30% in Ireland and 55% in Italy

As a result, reduction of financial exclusion

• one of the 2020 strategic objectives of the EU

Credit constraints (1)

• Income is a good predictor of credit application...

Applied for credit by income quintile

Sources: HFCS. Euro area; Hungary and Poland are not included

Did not apply for credit because of perceived credit constraints by income quintile

< A > <

Sources: HFCS. Euro area; Hungary and Poland are not included.

Household Finance and Consumption Survey, ECB, 2014

Renaud Bourlès (Centrale Marseille & AMSE) Microfinance in developed countries

• ... and of credit refusal

Credit refusals by income quintile

Sources: HFCS. Euro area; Hungary and Poland are not included.

Household Finance and Consumption Survey, ECB, 2014

▲□ ► < □ ► </p>

- Why refusing credit...
- ...instead of raising interest rate?
- A matter of information
- basic model by Stiglitz and Weiss (1990).
- Intuition: in a monopolistic setting
- the bank doesn't want to set up too high interest rate
- not to discourage borrowers with safer projects

Stiglitz and Weiss: The setting

- N risk-neutral borrowers w/ project for which need financing
 - no collateral nor personal investment
 - $\rightarrow\,$ need to borrow the total funds, normalized to 1
- projects generate
 - ρ_i in case of success
 - 0 in case of failure
- heterogeneous borrowers
 - two types of projects: safe and risky
 - different proba of success: p_S and p_R ($p_S > p_R$)
 - same expected return: $p_S.\rho_S = p_R.\rho_R \equiv \Pi > 1 \ (\rightarrow \rho_R > \rho_S)$
- The (monopolistic) bank
 - offers to lend funds against repayment in case of success
 - but doesn't hold enough funds to serve everyone (K < N)
 - still K > N max{α, 1 α}, with α the proportion of safe (excess demand not sufficient to explain complete exclusion)

Asymmetric information and adverse selection

- Assume that the bank doesn't observe the type of borrower
 - able to observe success or failure but not return
- if it only offers one contract with repayment D = 1 + r
 - type-*i* borrowers accepts iif $D < \rho_i$

Then, optimally

- either $D = \rho_R$
 - only risky borrowers accept ($ho_{S} <
 ho_{R})$
 - expected profit is $N(1-\alpha)(\Pi-1)$
- or $D = \rho_S$
 - both type borrow, but K < N
 - if all borrowers have equal chance of being financed
 - expected profit is $K(\alpha(\Pi 1) + (1 \alpha)(p_R.\rho_S 1))$
 - ightarrow bank "looses" on risky ($heta_R.
 ho_S < \Pi$) to attract safe
- banks prefers 2nd strat. if α high and \neq bw. type low

Credit rationing and solutions

We then talk about $\ensuremath{\textit{credit rationing}}$

- some borrowers (risky) don't get funded, although
- they would accept a higher repayment/interest rate.

Solution

- Offer different contract to different types
- need to find another dimension (on top of i.r.) to differentiate
- S&W (monopoly): proba. to get financed (or refinanced)
- safe (self)-select contracts w/ lower i.r. but lower proba

Under competition (see e.g. Feixas & Rochet section 3.2)

- assuming risk-aversion
- borrowers signal their type through self-financing (collateral)
- and safer borrowers ready to self-finance more

- Issue: poor people lack collateral
- In developing countries
 - microcredit originally relied on social collateral
 - through peer/group lending and joint liability
 - group members are liable for others' debt
- In developed countries
 - microcredit often "collateralized" by state guarantee
 - and are often used as a step to "traditional" loans

Peer lending and peer monitoring

- Initiated in developing countries (through Grameen Bank)
- Microcredit relied on group lending, and joint liability
- Group members liable for others' repayment
- Reduces moral hazard (both ex-ante and ex-post)
 - if social capital is important: social collateral
- also influences risk-taking (Stiglitz 1990)
 - group lending influences loan size
 - through peer-monitoring of project **riskiness**; $i, j \in \{R, S\}$

 $p_i p_j [u(y(p_i, L) - (1+r)L] + p_i(1-p_j)u[y(p_i, L) - (1+r+q)L] - v(L)$

- when *i* and *j* act cooperatively (w.r.t. riskiness and reporting)
- the maximum level of L s.t. safe project are chosen
- \bullet is higher with group lending \rightarrow higher repayment

• • = • • = • =

The progressive end of group liability

- Joint liability also have pitfalls
 - tension in groups, free-riding, strategic default, adverse sel.
- maybe higher repayment, but smaller client base
- ightarrow most MFIs move away from group lending
 - empirical analysis (ind. vs group): Giné and Karlan (2014)
 - randomization to deal with endogeneity
 - randomly removing group liability to existing groups [removes peer monitoring but not peer screening]
 - $\rightarrow~$ no change in repayment
 - randomly assigning new groups to ind. or group liability
 - ightarrow no difference in repayment
- \Rightarrow liability structure doesn't affect repayment

group effects (pressure, motivation, information) enough

also higher client growth and smaller loan size after conversion

In developed countries

- Individual lending prevails (social capital less important)
- Microcredit is generally provided
 - by not-for-profit MFIs (in Western Europe at least)
 - using fixed interest rate
- and is
 - highly subsidized, notably through guarantee
 - up to 75% in the EU (by the European Investment Bank)
 - regulated, notably in term of loan size (<10,000 €in France)
 - may trigger co-financing with bank
 - and have adverse effects (Cozarenco and Szafarz, 2016, 2018)
- Often supplemented by business development services
 - that is various forms of training (in accounting, management, marketing, law, etc.)
 - offered by 68% of European MFIs (EMN-MFC Report 2018)

Definition by the European Commission

Micro-credit is defined as a loan [...] to support the development of self-employment and micro-enterprises. It has a double impact [...]: an economic impact as it allows the creation of income generating activities and a social impact as it contributes to financial inclusion and therefore to the social inclusion of individuals.

- expected effects on employment and poverty alleviation
- \Rightarrow expected reduction on other social expenses
 - Microcredit addresses
 - labor market failure (unemployment)
 - credit market failure (credit rationing)
- \Rightarrow Government intervention is justified

What form of state intervention?

- State intervention can take the form of
 - direct or indirect subsidies, or
 - state guarantee
- State guarantee
 - is the most common intervention in Europe (**Recall**: the EIB guarantee loans up to 75%)
 - is favored as it directly deals with credit rationing
- However, it can have
 - counterproductive effects
 - by shifting the responsibility away from the lender
 - in particular when business devt. services is accounted for (Bourlès and Cozarenco, 2014)

A simple model of microcredit (1)

To analyze this issue,

- we adapt the seminal model of Tirole (2005)
- to account for the specifies of microcredit
 - the absence of collateral
 - state intervention
 - the importance of training (BDS)

Consider

- a continuum of risk neutral entrepreneurs
- $\bullet\,$ each endowed with a project that needs financing D
- & can either succeed and generate ho D or fail and give zero
- ρ is assumed to be heterogeneous and distributed on $|\rho, \overline{\rho}|$

To increase the probability of success

- costly effort (cost ψ), unobserved by MFI
- proba of success with effort: $\overline{p} >$ proba of success without: p

The MFI

- chooses projects it invests in (i.e. borrowers it lends D to)
- sets the i.r. r s.t. expected profit is zero for each contract

Moral hazard (unobservability of the effort by the MFI)

- For entrep. to exert effort, i.r. has to be incentive compatible
- Zero expected profit & incentive compatibility constraint
- $\rightarrow\,$ minimum project return threshold & the interest rate

As in Tirole (2005), projects are only viable if effort:

- w/ effort the NPV is positive: $\overline{p}\rho>1\;\forall\rho,$ or $\overline{p}\rho>1$
- w/out effort it is negative: $\underline{p}\rho < 1 \frac{\psi}{D} \ \forall \rho \text{ or } \underline{p}\overline{\rho} < 1 \frac{\psi}{D}$
- \Rightarrow MFI doesn't what to lend to those who won't provide effort

The benchmark case: "Laissez-faire"

Without state intervention and assuming away BDS

• a type-ho entrepreneur (with ho > 1 + r) exerts effort if:

$$\overline{p}\left[\rho D - (1+r)D\right] - \psi \ge \underline{p}\left[\rho D - (1+r)D\right]$$

 \Rightarrow for a given r, minimum return for borrower to exerts effort:

$$\rho_{\min} = \frac{\psi}{D\Delta p} + (1+r) > 1+r$$

- when the borrower exert effort: $\mathbb{E}(\pi) = \overline{p}(1+r)D D$ (remark: independent on ρ)
- and the zero profit condition gives the benchmark i.r. $\overline{r} = \frac{1-\overline{p}}{\overline{p}}$
- \Rightarrow the MFI invests in all projects generating a return higher than:

$$\rho_{\min} = rac{\psi}{D\Delta p} + rac{1}{\overline{p}}$$

Loan guarantee

- reduces the risk taken by the MFI
- aims at crowding-in part of initially excluded borrowers

Assuming a prop. $\gamma < 1$ of outstanding guaranteed if project fails

- doesn't change behavior of borrowers
- only impacts the consequence of project failure for the MFI
- zero profit condition becomes

$$\mathbb{E}(\pi) = \overline{p}(1+r_{\gamma})D + (1-\overline{p})\gamma D - D = 0$$

- leading to $r_\gamma = rac{1-\overline{p}}{\overline{p}}(1-\gamma) < ar{r}$
- $\Rightarrow\,$ under level- $\gamma\,$ loan guarantee, the MFI finance all $\rho>$

$$\rho_{\gamma} = \frac{\psi}{D\Delta p} + \frac{1 - (1 - \overline{p})\gamma}{\overline{p}}$$

- $\rho_{\gamma} < \rho_{\min}$: loan guarantee reduces credit rationing
- Why? Guarantee = \downarrow risk \rightarrow lower i.r. \Rightarrow effort for lower ρ \Rightarrow less credit rationing \rightsquigarrow less social expenses

Modeling Business Development Services

Business development services

- another key feature of small business microfinance
- modeled as an action provided by MFI, at cost K per contract
- that increases (uniformly) by ε the proba. to succeed
- \Rightarrow no effect on Δp \Rightarrow no effect on borrowers' behavior
 - only impact MFI behavior through p and K

Under laissez-faire

•
$$\mathbb{E}(\pi) = (\overline{p} + \varepsilon) (1 + r_{\varepsilon}) D - D - K \Rightarrow r_{\varepsilon} = \frac{1 - (\overline{p} + \varepsilon)}{\overline{p} + \varepsilon} + \frac{K}{(\overline{p} + \varepsilon)D}$$

 \Rightarrow the MFI finances projects with returns higher than

$$\rho_{\varepsilon} = \frac{\psi}{D\Delta \rho} + \frac{1}{\overline{\rho} + \varepsilon} + \frac{K}{(\overline{\rho} + \varepsilon) D}$$

• $\rho_{\varepsilon} < \rho_{\min}$ (i.e. BDS crowds-in borrowers) $\Leftrightarrow \frac{\varepsilon}{\overline{p}} > \frac{K}{D}$ \Leftrightarrow relative gain in proba. of success exceeds relative cost.

The counterproductive effect of state guarantee

Now, under state guarantee, taking into account BDS:

- $\mathbb{E}(\pi) = (\overline{p} + \varepsilon) (1 + r_{\gamma \varepsilon}) D + (1 (\overline{p} + \varepsilon)) \gamma D D K$
- and the lower acceptable return becomes:

$$\rho_{\gamma\varepsilon} = \frac{\psi}{D\Delta\rho} + \frac{1 - (1 - (\overline{\rho} + \varepsilon)\gamma)}{\overline{\rho} + \varepsilon} + \frac{K}{(\overline{\rho} + \varepsilon)D}$$

• thus BDS is then useful, i.e. $\rho_{\gamma\varepsilon} < \rho_{\gamma}$ iif $\frac{\varepsilon}{\overline{p}} > \frac{\kappa}{(1-\gamma)D}$

Proposition

 $\rho_{\gamma} - \rho_{\gamma\varepsilon} < \rho_{\min} - \rho_{\varepsilon}$: Under uniform distribution of project returns, the number of additional entrepreneurs financed through business development services is larger without the state guarantee.

- Intuition: benefits of BDS decreasing with state guarantee
- BDS \sim self-protection; guarantee \sim insurance

Alternative policy: BDS subsidization

- Given this perverse effect of loan guarantee
- an alternative policy might do better in terms of fin. inclusion
- we show that this is the case for full BDS subsidization: $\mathbb{E}(\pi) = (\overline{p} + \varepsilon) (1 + r_{\varepsilon}) D - D$

Proposition

If BDS are efficient enough and are targeted toward the borrowers with the lowest project returns, then the state can crowd-in more borrowers with the same budget by subsidizing BDS rather than guaranteeing loans.

We show it by

- $\bullet\,$ finding the γ that cost as subsidizing BDS for every borrower
- \bullet showing this γ leads to same outreach as full BDS subs.

• (efficiency:
$$\frac{\varepsilon}{\overline{p}+\varepsilon} > \gamma(1-\overline{p})$$
)

Financial inclusion. And then?

- The above policies are worthwhile, only if
- financial inclusion allows saving on other social expenses
- i.e. if financed micro-enterprises succeed / last
- in part. when ran by people otherwise excluded from labour m.

Analyzed in Bourlès and Cozarenco (2018)

- credit repayment and business continuation
- after professional microcredit
- controling for entrepreneurial motivation
- and employment status

Following the Global Entrepreneurship Monitor, distinction betw/

- Opportunity entrepreneurs, who start a business
 - voluntarily, to take advantage of new opportunities
- Necessity entrepreneurs, who start a business
 - because they have difficulties remaining in the paid job market.
- Close to former pull/push entrepreneur dichotomy
- Theoretical effect on performance ambiguous
 - extrinsic motivation vs. outside opportunity
- Empirical difficulties on measurement
 - declarative and potentially endogenous

Entrepreneurial motivation and effort: A toy model

- Assume (now) risk-averse borrowers, without collateral
- who borrow at a fixed interest rate and differ in terms of
 - extrinsic motivation b_i (non-pecuniary benefit from success)
 - outside opportunity o_i (how much they earn after failing)
- they choose (now) continuous effort e_i to maximize $\mathbb{E}u$

$$p(e_i) [u(\rho - (1+r)D) + b_i] + (1 - p(e_i))u(o_i) - \psi(e_i)$$

• that is (assuming $p''(\cdot) < 0$), e_i^* such that

$$f(e_i^*, o_i, b_i) = p'(e_i^*) [u(R - r) + b_i - u(o_i)] - \psi'(e_i^*) = 0$$

- using the implicit function theorem, $\frac{de_i^*}{db_i} > 0$ and $\frac{de_i^*}{do_i} < 0$
- and it is unclear that opportunity entr. (higher b_i; higher o_i)
- exert more effort and have better performance

Empirical analysis: context and data

- Sample of 275 microfirms, clients of of French MFI (NGO)
- operating in PACA: Créasol (from CEPAC CSR policy)
- average loan granted: 8,250 €; average duration: 52 months
- interest rate = 4.4% for all loans
- loans granted between between April 2008 and April 2012
- Data on:
 - Individual and business characteristics (from the MFI)
 - Repayment history within the MFI (from the MFI)
 - Business survival status and date of closure when applicable (from www.societe.com)
 - Information on entrepreneurial motivation (from a survey online and by phone between July and September 2012)
 - Business cycles at PACA-region level by sector and unemployment rates at the employment zone level (INSEE)

Dependant and main explanatory variables

Dependant variables: measure of performance

- Dummy *Repayment*= 1 if < 3 late payments in credit history by beginning of 2016 (56% of our sample)
- Dummy *Closed*= 1 if the business was closed as of March '16 (43% of our sample)

Main explanatory variable (alternatives)

- Dummy Necessity= 1 if answered "by necessity, to create my own job" to "Overall, did you create your business to seize an opportunity or by necessity, to create your own job?" (56% of our sample)
- Dummy Avoid_unempl.=1 if answered "To avoid unempl." to "What was your main reason for business start-up?" (32% of our sample; 55% among necessity; 9% among opp.)
- Dummy Fulfill_dream=1 if answered "To fulfill a life project or dream" to the above question (42% all; 29% nec; 56% opp)

Additional controls are

- age, the square of age (non-linear effects)
- gender, education, household income
- dummy for long-term unemployment
- size of the project, having other debts, start-up dummy
- activity sectors and limited liability company dummies
- macroeconomic sources of variance
 - quarterly rates of increase in business failures in PACA (as a measure of economic health)
 - quarterly rates of increase in new business start-ups in PACA (as a measure of competition)
 - ullet unempl. rate in borrower's empl. zone (\sim city of residence)
 - at the time the loan is granted

Determinants of entrepreneurial motivation

	Dependent variable: Necessity dummy		
Explanatory variables:			
Avoid unemployment	1.57***	(0.21)	
Age	0.15*	(0.08)	
Age ²	-0.002*	(0.001)	
Male	0.22	(0.20)	
Education	-0.00	(0.10)	
HH income	-0.21**	(0.08)	
Unemployed more 6	-0.17	(0.19)	
Project size	-0.00	(0.00)	
Personal investment	0.01	(0.27)	
Other debts	-0.14	(0.19)	
Start-up	0.04	(0.26)	
Trade	0.34	(0.23)	
Services	0.06	(0.27)	
Food and accommodation	0.22	(0.33)	
LLC	-0.67***	(0.20)	
Unemployment rate	0.01	(0.04)	
Constant	-3.10*	(1.60)	
Observations	275		

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

- A 🗐 🕨

The empirical model

- The variable *Necessity* is likely to be **endogenous**
- as respondent answers might evolve depending on perf
- in part. here as we don't "observe" motiv. at business start-up
- To deal with this caveat, we use a bivariate probit model
- instrument: Avoid_unemployment likely not endogenous

The model writes ($i \in \{Repaying, Closed\}$)

$$y_i = \mathbb{1}[\alpha_i \text{Necessity} + z_1 \beta_{1i} + e_{1i}]$$

Necessity $= \mathbb{1}[z\beta_2 + e_2]$

- w/ (e_{1i}, e₂) independent of z, distributed as bivariate normal with mean zero, unit variance, and ρ_i = Corr(e_{1i}, e₂)
- z_1 includes constant + all expl. var. except Avoid_unempl.
- only included in vector *z*, with all others

Results: Determinants of Entrepreneurial Performance

	Repaying		Closed		
Explanatory variables:					
Necessity	-0.98***	(0.35)	0.05	(0.37)	
Age	0.24***	(0.07)	0.01	(0.08)	
Age ²	-0.003***	(0.001)	-0.00	(0.00)	
Male	-0.16	(0.18)	-0.25	(0.19)	
Education	0.10	(0.09)	-0.22**	(0.09)	
HH income	-0.04	(0.08)	0.06	(0.08)	
Unemployed more 6	-0.03	(0.17)	0.11	(0.17)	
Project size	-0.00	(0.00)	-0.00	(0.00)	
Personal investment	0.36	(0.25)	-0.28	(0.25)	
Other debts	0.34*	(0.18)	-0.31*	(0.18)	
Start-up	-0.19	(0.23)	0.40*	(0.24)	
Trade	0.09	(0.21)	0.42**	(0.21)	
Services	0.29	(0.25)	-0.32	(0.26)	
Food and accommodation	-0.35	(0.29)	0.66**	(0.30)	
LLC	-0.10	(0.20)	-0.07	(0.21)	
ρ	0.62*	(0.24)	0.08	(0.24)	
Constant	-4.69***	(1.53)	0.50	(1.53)	
Business cycles	Yes		Yes		
Observations	275		275		
Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1					

Comments and interpretation

- Necessity entrep. have significantly more difficulty repaying
- BUT their businesses are just as likely to survive
- Consistent with our theoretical framework:
 - because of better external options, opportunity entrepreneurs
 - may close their business despite better financial performance
- In case of business closure due to a better outside option
 - they seem to continue repaying their loans
 - arguably to maintain a good credit history
- Results on control variables in line w/ intuition and literature
 - interestingly, having other debts improves performance
 - probably due to the screening complementarities
- ρ only significant for loan repayment estimation
 - then bivariate probit is appropriate

Robustness checks: duration models

- As indicated by the literature on credit scoring models
- it is not just credit default itself that is important
- but when the default occurs (early default more costly)
- \Rightarrow duration analysis on loan repayment and business survival
 - Issue: deal w/ endogeneity when survival time & censoring
 - Alternative: use directly Avoid_unempl. (and Fulfill_dream)
 - Results are confirmed
 - respondents giving "Avoid unemployment" reason to start-up
 - have 0.74 times shorter expected time before 3rd late pay.
 - BUT length of business survival is not significantly \neq for them
 - Similarly, we find a positive effect of *Fulfill_dream* dummy
 - on time before 3rd late pay. but no impact on business survival

Policy implications: Cost-benefit analysis

Is public intervention worth it? Results suggest

- predicted proba. of having at least three unpaid installments
- is equal to 0.27 for opportunity, 0.6 for necessity
- predicted survival time before the third late payment
- is equal to 23 months for opportunity, 17 months for necessity

Using average values: 8,250 €at 4.4% for 52 months

- Expected gross capital loss: 1315€ for opp.; 3436€ for nec.
- ⇒ Cost of 70% guarantee by the state (case at that time) respectively 921€ and 2405€
 - compared to average monthly allowance of unempl.: 1160 \in
 - this seems to make perfect sense

Simple analysis. Call for more work (regarding both cost & benefit)

What about business training?

- Also important to measure the effect of business training
- Issue: assignment to training likely to be endogenous
- Solution: Randomized Control Trials
 - Findings: big impact on knowledge
 - BUT small impact on financial performance
- Moreover, when not random
 - training/help may trigger behavioral reactions
 - in particular if borrowers think MFI has superior info
 - looking-glass self effect (Benabou and Tirole, 2003)
- In Bourlès, Cozarenco, Henriet and Joutard (2019)
 - we try to control for this
 - trivariate model (credit alloc, training alloc, repayment)
 - $\rightarrow~\textbf{positive~effect}$ of business training on survival time of loans

- Why is microcredit useful even in developed countries?
 - financial exclusion
 - externalities on social expenses
- How is it different from microcredit in developing countries?
 - mostly individual loans, non-for-profit
 - highly regulated
- Public intervention / subsidies key!
 - Mostly state guarantee; BDS subsidization might do better
 - Still, seems worth the cost!

Bibliography

- Benabou, R. and Tirole, J. (2003). "Intrinsic and extrinsic motivation." *Review* of *Economic Studies*, 70(3), 489–520.
- Bourlès, R. & Cozarenco, A. (2014). "State intervention and the microcredit market: The role of business development services." *Small Business Economics*, 43(4), 931–944.
- Bourlès, R. & Cozarenco, A. (2018). "Entrepreneurial motivation and business performance: evidence from a French Microfinance Institution." *Small Business Economics*, 51(4), 943–963.
- Bourlès & Cozarenco, A. & Henriet, D. & Joutard X. (2018). "Business Training and Loan Repayment: Theory and Evidence from Microcredit in France." AMSE Working Papers. 1811.
- Freixas, X., & Rochet, J.-C. (2008). Microeconomics of Banking, 2nd ed., MIT Press.
- Giné, X. & Karlan, D. S. (2014). "Group versus individual liability: Short and long term evidence from Philippine microcredit lending groups." *Journal of Development Economics*, 107(C), 65–83.
- Stiglitz, J. E. (1990). "Peer Monitoring and Credit Markets." *The World Bank Economic Review*, 4(3), 351–366.
- Stiglitz, J. E., & Weiss, A. (1981). "Credit rationing in markets with imperfect information." *The American Economic Review*, 71(3), 393–410.
- Tirole, J. (2005). The Theory of Corporate Finance. Princeton University Press.

< 🗇 🕨 < 🖻 🕨