

ORGANIZATION AND REGULATION OF FINANCIAL SYSTEMS

S8 DMC

Renaud Bourlès

OUTLINE

▷ INTRODUCTION

- ► Lessons from the crisis
- ► What is a bank and what do banks do?
- \triangleright Models for banking regulation
 - ► Deposit insurance
 - ► Lender of last resort: a simple model

▷ CAPITAL RESERVES: THE CASE OF INSURANCE

- ► Optimal choice of capital reserve
- ► Failure risk and insurance demand

GRADING

 \triangleright The **EVALUATION** of the course will be based on

- ► an ORAL PRESENTATION
- ► by **GROUPS** of 3 to 4 students
- \blacktriangleright on a theme linked to **REAL-WORLD REGULATION**
- ▷ The list of **THEMES**
 - ► is available on MOODLE (the allocation taking place there)
 - ► Two groups will work **INDEPENDENTLY** on each theme

LESSONS FROM THE (LAST) CRISIS see Tirole, in "Balancing the Banks", or Beneplanc and Rochet: "Risk management in turbulent times"

 \triangleright LAST crisis

▶ since 1970: 112 banking crises, affecting 93 countries

 \blacktriangleright 51 international crises (affecting several countries)

⊳ Financial MADNESS?

 ECON 101: all economic agents (incl. managers and employees in financial industries)

► react to the information and incentives

 \triangleright Bad incentives + bad information \Rightarrow BAD BEHAVIOR

WHAT HAPPENED?

- ▷ ORIGIN : home loans market
- \triangleright then:
 - ► sale of assets at FIRE-SALE PRICES
 - ► unprecedented AVERSION TO RISK
 - **FREEZING OF INTERBANK** and bond market
- ▷ "government" REACTION: bail-out ("renflouement") of some of the largest banks and a major insurance company

AN EXAMPLE: AIG

 \triangleright Beginning of 2007

- ▶ \$ 1 trillion of assets
- ► \$ 110 billion revenue
- \blacktriangleright 74 million customers

▷ September 2008: emergency government assistance

- ► 2-year emergency loan of \$ 85 billion
- ▶ gvt hold 79.9% of shares

 $\Rightarrow 50\%$ of U.S. GDP has been **GUARANTEED**, **LENT** or spent by the Fed, the US Treasury and other federal agencies

THE ROLE OF SUBPRIME MORTGAGES

- \triangleright Subprime mortgages ("prêt hypothécaires"): loans w/ difficulties in maintaining repayment schedule
 - ► higher interest rate
 - ► less favorable terms (collateral)

to **COMPENSATE** for high risk

- ▷ losses on the US subprime market **SMALL** relative to previous figures (\$1,000 billion, 4% of NYSE capitalization)
- = detonator for a sequence of incentives and market **FAILURES** (asym. info. betw/ contracting parties) exacerbated by bad news

OTHER ISSUES

- \triangleright bad **REGULATION** \rightarrow incentives to take risk
- > POLITICAL resolution to favor real estate (to promote acquisition of homes by households)
- ▷ MONETARY POLICY: short term interest rate low
- \triangleright excessive LIQUIDITY
 - \blacktriangleright international savings \rightarrow US \Rightarrow excess liquidity
 - \Rightarrow **SECURIZATION** ("titrisation") to answer the demand

SECURIZATION

 $\triangleright \operatorname{Aim}$

 \blacktriangleright to refinance the lender \rightarrow can finance other activities

► to fulfill the demand for securities

► to diversify and spread risk

⊳example: TRANCHING

[equity ("fond propre") tranche generally retained by the bank]

SECURIZATION: CDO

\triangleright Collateralized Debt Obligation

- ► the bank issues bonds against investment
- ► **PRIORITIZED** by different tranches
- ex: 3 loans of nominal 1, each w/ proba 10% of default and 0 recovery in case of default

►
$$\mathbb{P}(i \text{ defaults}) = {i \choose n} p^i (1-p)^{n-i}$$

 $\mathbb{P}(1 \text{ d}) = 24.3\%, \ \mathbb{P}(2 \text{ d}) = 2.7\%, \ \mathbb{P}(3 \text{ d}) = 0.1\%$

• equity tranche: loss up to 1 mezzanine tranche: loss between $x_1 = 1$ and $x_2 = 2$ senior: losses above $x_2 = 2$

SECURIZATION: CDS

\triangleright Credit Default Swap

- ► contract between two parties
- ► the **PROTECTION** buyers pays a period premium
- \blacktriangleright to the protection seller who, in exchange,
- commit to pay a fixed sum if a credit instrument (a bond or a loan) DEFAULT
- \triangleright different for insurance
 - ► the buyer **DOESN'T NECESSARILY OWN** the credit instrument
 - ► the seller is **NOT A REGULATED** entity

SECURIZATION: ISSUES

- ▷ shift the **RESPONSIBILITY** away from the lender
- \Rightarrow less incentive to **CONTROL**
- ▷ asymmetry of **INFORMATION**
- ▷ laxity of credit-rating **AGENCIES**
- \triangleright excessive maturity transformation

THE NORTHERN ROCK EXAMPLE

- ▷ **STRATEGY**: invest in (apparently) safe tranches of Residential Mortgage Backed Securities (RMBS)
- \triangleright financed by short term deposit
- \triangleright **PROBLEM**: rumors (risk on RMBS) \Rightarrow panic \Rightarrow bank run
- \Rightarrow nationalization: injection of £23 billion
- ▷ lack of liquidity also led to default of LEHMAN BROTHERS (biggest default in the US history: \$ 613 bn of debt)

HOW TO REGULATE?

- ▷ Basel accords: **REQUIREMENT** regarding the minimal level of **CAPITAL** or equity ("fonds propres")
- ⊳ Basel I: requires 8% OF BANK CREDIT RISK
- \triangleright Problems
 - ► **OTHER RISKS**? Liquidity risks? Off balance-sheet?
 - ► Risk MEASURE?
 - ► INFORMATION
 - ► INCENTIVES. Ex: managerial incentives (stock options). The CEO of Lehman Brothers earned \$ 250 million between 2004 and 2007
 - **SYSTEMIC** institutions: Too Big To Fail

BASEL II

\triangleright published in 2004, "implemented" in 2008

Pillar I Minimal Capital Requirement	Pillar II SUPERVISORY REVIEW PROCESS	Pillar III DISCLOSURE REQUIREMENT
⊳ Credit Risk	 Regulatory framework Internal cap. adequacy Rick management 	\triangleright Disclosure on capital, risk exposures,
\triangleright Market Risk	 Kisk management Supervisory framework Evaluation of internal 	capital adequacy
\triangleright Operational Risk	systems▶ Assessment of risk profile	\triangleright Comparability

 \triangleright **BASEL III** published in 2010, not yet fully implemented

▷ tries to also account for LIQUIDITY RISK

 \triangleright and **SIFIS** (Systemically important financial institutions)

WHAT IS A BANK AND WHAT DO BANKS DO? (1) see Freixas and Rochet: "Microeconomics of banking"

- ▷ Banking operations **VARIED AND COMPLEX**
- \triangleright But a **SIMPLE** operational def (used by regulators) is
- "a bank is an institution whose current operations consist in granting loans and receiving deposits from the public"
- ▷ CURRENT important: most firms occasionally lend money to customers or borrow from suppliers.
- ▷ BOTH LOANS AND DEPOSITS important: combination of lending and borrowing typical of commercial banks. Finance a significant share of loans through deposits \rightarrow fragility.
- ▷ PUBLIC: not armed (≠ professional investors) to assess safety financial institutions. Public good (access to safe and efficient payment system) provided by private institutions

WHAT IS A BANK AND WHAT DO BANKS DO? (2)

 \triangleright Protection of depositors + safety and efficiency of payment system \rightarrow PUBLIC INTERVENTION

▷ Crucial role in ALLOCATION OF CAPITAL

- ► efficient life-cycle allocation of household consumption
- ► efficient allocation of capital to its most productive use
- \triangleright before performed by banks alone; now fin. markets also
- \triangleright 4 FUNCTIONS performed by banks
 - ► Offering liquidity and payment services
 - ► Transforming assets
 - ► Managing risks
 - ► Processing information and monitoring borrowers

LIQUIDITY AND PAYMENT SERVICES

- \triangleright Without transaction costs (Arrow-Debreu): no need for money.
- \triangleright FRICTIONS \rightarrow more efficient to exchange goods for money.
- \triangleright commodity money ("m. marchandise") \rightarrow fiat money ("m. fiduciaire"): medium of exchange, intrinsically USELESS, guaranteed by some institution
- ⊳ Role of **BANKS**
 - ► money change (exchange between different currencies issued by distinct institutions) ⇒ dvlp of trade
 - + management of deposits (less liquid, safer)
 - ► payment services: species inadequate for LARGE or at distance payments
 - \rightarrow banks played an important part in clearing positions

TRANSFORMING ASSETS

Asset transformation can be seen from three viewpoints:

- ▷ convenience of **DENOMINATION** (size). Ex: small depositors facing large investors willing to borrow indivisible amounts.
- ▷ QUALITY transformation: better risk-return characteristics than direct investments (diversified portfolio, better info)
- ▷ MATURITY transformation: transforms short maturities (deposits) into long maturities (loans) → risk of illiquidity
 SOLUTION: interbank lending and derivative financial instruments (swaps, futures)

MANAGING RISK

- \triangleright Credit risk \Rightarrow use of **COLLATERAL**
- \triangleright Liquidity risk \Rightarrow interest rate
- \triangleright Off-Balance-sheet risk: COMPETITION \Rightarrow more sophisticated contracts
 - ► loan commitment, credit lines
 - ► guarantees and swaps (CDS)
 - ► hedging contracts ("opération de couverture")
- ▷ not real liability (or asset): CONDITIONAL COMMITMENT
- \Rightarrow need of careful **REGULATION**

MONITORING AND INFORMATION PROCESSING

▷ Problems resulting from IMPERFECT INFORMATION on borrowers.

⇒ Banks invest in technologies that allow them
▶ to SCREEN loan applicants and
▶ to MONITOR their projects

 \triangleright Long-term relationships: mitigates MORAL HAZARD

A SIMPLE MODEL WITH MORAL HAZARD \triangleright Firms seek to finance investment projects of a size 1 \triangleright Risk-free rate of interest normalized to zero. ▷ Firms have **CHOICE** between ▶ a good technology: G with proba. Π_G (0 otherwise) ▶ a bad technology: B with proba. Π_B (0 otherwise) \triangleright Only G proj. have positive net (expected) present value: $\Pi_G G > 1 > \Pi_B B$

but B > G, (which implies $\Pi_G > \Pi_B$)

▷ Success verifiable, not choice of techno. (nor return) → can promise to repay R (nominal debt) only if success + no other source of cash → repayment zero if fails ▷ value of R determines choice of **TECHNOLOGY**

IN THE ABSENCE OF MONITORING \triangleright chooses G techno. iif gives higher expected profit: $\Pi_G(G-R) > \Pi_B(B-R)$ \triangleright Since $\Pi_G > \Pi_B$ this is equivalent to $R < R_C \equiv \frac{\Pi_G G - \Pi_B B}{\Pi_G - \Pi_B}$ \Rightarrow Proba Π of REPAYMENT DEPENDS ON R: $\Pi(R) = \begin{cases} \Pi_G & \text{if } R \le R_C \\ \Pi_B & \text{if } R > R_C \end{cases}$ \triangleright Competitive equilibrium $\rightarrow \Pi(R).R = 1$ \triangleright as $\Pi_B R < 1 \ \forall R < B$, ONLY POSSIBLE EQ.: G \triangleright works only if: $\prod_{C} R_{C} \geq 1$, i.e. R_{C} high enough

 \leftrightarrow if MORAL HAZARD NOT TOO IMPORTANT \triangleright otherwise: no trade (no credit market)

INCLUDING MONITORING

 \triangleright at cost C, BANKS can prevent from using bad techno

 \Rightarrow new equilibrium interest rate: $\Pi_G R_m = 1 + C$

▷ bank lending appear at equilibrium if (as $R_m < G$): ▶ $\Pi_G G > 1 + C$ ↔ monitoring cost lower than the NPV ▶ $\Pi_G R_C < 1$ ↔ direct lending (less expensive) not possible

 \triangleright that is for intermediate values of Π_G :

$$\Pi_G \in \left[\frac{1+C}{G}, \frac{1}{R_C}\right]$$

CONCLUSION

 \triangleright Assuming the monitoring cost C small enough so that $\frac{1}{R_C} > \frac{1+C}{G}$

 \triangleright 3 possible regimes of the credit market at equilibrium:

if Π_G > ¹/_{R_C}: firms issue direct debt at rate R₁ = ¹/_{Π_G}
if Π_G ∈ [^{1+C}/_G, ¹/_{R_C}]: borrow from BANKS at rate R₂ = ^{1+C}/_{Π_G}
if Π_G < ^{1+C}/_G: credit market collapses (no trade eq.)

POSSIBLE EXTENSIONS

 \triangleright Dynamic model (2 dates) with **REPUTATION**

- ▶ repayment at $t = 1 \rightarrow \text{possibility of (cheaper) direct}$ loan at t = 2
- ► $R^{t=1} < R_C$ (reputation \downarrow moral hazard); $R_U^{t=2} > R_C$

 \triangleright Use of CAPITAL (choice between capital and debt)

- \blacktriangleright well capitalized \rightarrow direct loan
- \blacktriangleright intermediate capitalization \rightarrow bank loan
- \blacktriangleright under-capitalized \rightarrow no loan
- \rightarrow substituability between capital and monitoring

RECALL: WHY TO REGULATE? (1)

- ▷ In general: WELFARE theorems
- ▷ Regulation iif **MARKET FAILURES**: externalities, asymmetric information
- \triangleright Banks (or fin. intermediaries) solve some of these problems
- \triangleright **BUT** create others:
 - \blacktriangleright liquidity risk: assets illiquid, liabilities liquid

Assets	Liabilities	
	Deposits	
Loans		
	Capital (bonds)	
Reserves		

RECALL: WHY TO REGULATE? (2)

- ▷ to **PROTECT CLIENTS** (small depositors)
 - $\blacktriangleright \neq$ other institutions: creditors = public
 - \rightarrow no monitoring power
 - ► creditor of other firms: BANKS (can monitor)
- + CONFLICT OF INTERESTS btw/ manager and depositors managers take too much risk (not their mean of payment)
- + COST OF FAILURE: contagion + CONFIDENCE on the system of payment
- $\Rightarrow DEPOSIT INSURANCE + LENDER OF LAST RESORT + CAPITAL RATIO (+ Takeover ultimately)$

DEPOSIT INSURANCE

 \triangleright to avoid bank panics and their social costs

- ▷ governments have established deposit insurance schemes: banks pay a premium to a deposit insurance fund
- \triangleright ex Federal Deposit Insurance Corporation in the U.S.
 - \blacktriangleright created in 1933
- ▶ in reaction to hundreds of failure in the 20s and 30s ▷ mostly public schemes
- \triangleright pros
 - \blacktriangleright systemic risk \rightarrow private sector not "credible"
 - \blacktriangleright take-off decisions = public
- \triangleright cons: lack of competition
 - ► less incentive to extract info and price accurately

DEPOSIT INSURANCE: A MODEL see Freixas and Rochet: "Microeconomics of banking" (section 9.3)

- $\triangleright 2$ dates: t = 0 and t = 1
- \triangleright at t = 0 the bank:
 - \blacktriangleright issues equity E
 - \blacktriangleright receives deposits D
 - \blacktriangleright loans L
 - \blacktriangleright pays deposit INSURANCE PREMIUMS P

Assets	Liabilities
Loans L	Deposits D
Insurance Premiums P	Equity E

 \triangleright normalize the risk-free rate to 0

 \triangleright at t = 1 the bank is liquidated

 \triangleright depositors **COMPENSATED** if bank's assets insufficient

AssetsLiabilitiesLoan repayments L_1 Deposits DInsurance payments SLiquidation value V

 \triangleright from t = 0: V, S and L_1 are stochastic: $\widetilde{V}, \widetilde{S}$ and $\widetilde{L_1}$ \triangleright with $\widetilde{V} = \widetilde{L_1} - D + \widetilde{S}$

▷ insurance pays difference betw/ deposits (to "pay back") and loan repayments:

 $\widetilde{S} = \max(0, D - \widetilde{L_1})$

 \triangleright moreover from t = 0: D = L + P - E

 \triangleright therefore:

$$\widetilde{V} = E + (\widetilde{L_1} - L) + [\max(0, D - \widetilde{L_1}) - P]$$

 \triangleright shareholders' value of the bank = its initial value + the increase in the value of loans + net subsidy (<0 or >0) received from deposit insurance.

 \triangleright if FOR EXAMPLE

$$\widetilde{L}_1 = \begin{cases} X & \text{with prob. } \theta \\ 0 & \text{with prob. } 1 - \theta \end{cases}$$

 \triangleright the **EXPECTED GAIN** for the bank's shareholders is

$$\mathbb{E}(\Pi) \equiv \mathbb{E}\left(\widetilde{V}\right) - E$$

= $\underbrace{\left(\theta X - L\right)}_{\text{net present value of loans}} + \underbrace{\left((1 - \theta)D - P\right)}_{\text{net subsidy from insurance}}$

$$\mathbb{E}(\Pi) = (\theta X - L) + ((1 - \theta)D - P)$$

▷ **PROBLEM:** create moral hazard

- \blacktriangleright Suppose P fixed, and
- ► banks choose characteristics (θ, X) of projects
- ► Then, within projects with same NPV: $\theta X L = cst$
- ► they choose those with lowest θ (i.e. **HIGHEST RISK**)

\triangleright WHY?

P/D (premium rate) does not depend RISK TAKEN
 as it was the case in the United States until 1991
 then new system with RISK-RELATED premiums

LENDER OF LAST RESORT: A SOLUTION TO COORDINATION FAILURE

see Rochet and Vives, JEEA 2004

MOTIVATION

- \triangleright Role of government (or IMF):
- ⊳ lend to banks "ILLIQUID BUT SOLVENT"!
- \triangleright redundant w/ interbank market?
 - ► Yes! If the market works well
 - ► i.e. without asymmetric information
 - ▶ if it can recognize solvent banks

LENDER OF LAST RESORT: THE MODEL 3 dates: $\tau = 0, 1, 2$

 \triangleright at $\tau = 0$

 \blacktriangleright bank possesses own funds E

- ► collects uninsured deposits D_0 normalized to 1 give D > 1 when withdrawn (independ. of the date)
- used to finance investment I in risky assets (loans)

▶ the rest is held in cash reserves K

- \triangleright under normal circumstances: $I \rightarrow \widetilde{R}.I$ at $\tau = 2$ deposits are reimbursed and shareholders get the difference
- ▷ BUT ANTICIPATED WITHDRAWALS (at τ = 1) can occur depending on the signal received by depositors on *R̃* ▷ if proportion x > K: bank has to SELL part of its assets

ASSUMPTIONS

 \triangleright Withdrawal decision taken by **FUND MANAGERS**

- ▶ in general they prefer not to do so
- ► BUT are penalized by the investors if the **BANK FAILS**
- \triangleright consistent with observations
- majority of deposits held by collective investment funds
 remuneration of fund managers based on size not return
 Model: remun. based on whether take the "right decision"
 - ▶ if withdraw and not fail $\rightarrow -C$
 - ▶ if withdraw and fail $\rightarrow B$

 \triangleright noting P the probability that bank fails: withdraw if

$$PB - (1 - P)C > 0 \Leftrightarrow P > \gamma \equiv \frac{C}{B + C}$$

SIGNALS AND FAILURE

At $\tau = 1$

- \triangleright manager *i* **PRIVATELY** observes a signal $s_i = R + \varepsilon_i$ with ε_i i.i.d. and indep. from R
- $\Rightarrow x\%$ of the managers decide to withdraw
- \triangleright if x > K/D the bank has to **SELL** a volume y of its asset (repurchase agreement ~ collateralized loan)
 - ▶ if y > I: the bank FAILS AT $\tau = 1$
 - ▶ if R(I y) < (1 x)D: the bank FAILS AT $\tau = 2$

INTERBANK MARKET

 \triangleright in case of LIQUIDITY SHORTAGE at $\tau = 1$

- \blacktriangleright sell asset on repurchase agreement (or repo) market
- ▶ informationally **EFFICIENT**: resale price depend on R
- ► BUT cost (λ) of **FIRE-SALE** (or liquidity premium) the bank only gets a fraction $\frac{1}{1+\lambda}$ of its asset value

$$\Rightarrow y \ / \ \frac{Ry}{1+\lambda} = [xD - K]_+$$
$$\Leftrightarrow y = (1+\lambda)\frac{[xD - K]_+}{R}$$

 $\triangleright \lambda$ is key to this analysis

 \triangleright reflects e.g. moral hazard: 2 reasons for selling asset

► needs liquidity or wants to get rid of bad loans (value 0) ► $\frac{1}{1+\lambda}$ is then the proba of the former

AIM OF THE MODEL

want to show that interbank market DOES NOT SUFFICE
to prevent EARLY CLOSURE of the bank
and so that we need a LENDER OF LAST RESORT

▷ if R small (close to insolvency) or λ large (liquidity shortage) ▷ even with interbank market: early closure at $\tau = 1$

▷ Now: early closure → physical LIQUIDATION of assets ⇒ cost of liquidation ($\neq \lambda$)

 \triangleright model: if a bank closes at $\tau=1,$ liquidation value νR with $\nu<<\frac{1}{1+\lambda}$

BANK RUNS AND SOLVENCY (1)

\triangleright if $xD \leq K$: no sale of assets at $\tau = 1$ \Rightarrow failure at $\tau = 2$ iif $RI + K < D \Leftrightarrow R < \frac{D-K}{I} \equiv R_S$

▷ if $K < xD \le K + \frac{RI}{1+\lambda}$: partial sale of assets at $\tau = 1$ ⇒ failure at $\tau = 2$ iif $RI - (1+\lambda)(xD - K) < (1-x)D \Leftrightarrow R < R_S + \lambda \frac{xD - K}{I} \equiv R_F(x)$ → Because of λ , SOLVENT banks $(R > R_S)$ can fail if $R > (1 + \lambda)R_S$, never fails (even x = 1): super solvent

$$\triangleright \text{ if } xD > K + \frac{RI}{1+\lambda}: \text{ failure at } \tau = 1$$
$$\Leftrightarrow R < (1+\lambda)\frac{xD-K}{I} \equiv R_{EC}(x)$$

BANK RUNS AND SOLVENCY (2)

 \triangleright using the LIQUIDITY RATIO: k = K/D, we have:

$$R_S = \frac{1-k}{I}D, \ R_F(x) = R_S\left(1 + \lambda \frac{[x-k]_+}{1-k}\right), \ R_{EC}(x) = R_S\left(1+\lambda\right) \frac{[x-k]_+}{1-k}$$

 $\triangleright x \leq 1 \Rightarrow R_F(x) > R_{EC}(x)$

▷ EARLY CLOSURE IMPLIES FAILURE (the converse is not true)

BANK RUNS AND SOLVENCY (3)

Equilibrium of the Investors' Game

- \triangleright How is x determined?
- ▷ without loss of generality, assume a threshold strategy for all managers
- \triangleright with draw if SIGNAL s < t
- ▷ i.e. with proba: $\mathbb{P}(R + \varepsilon < t) = F(t R)$ where F is the c.d.f of ε
- \triangleright this proba. also equals the proportion of with drawals x(R,t)
- \triangleright moreover, we assumed that managers withdraw if
- \triangleright the PROBABILITY OF FAILURE: $P(s,t) > \gamma$
- $\Leftrightarrow \mathbb{P}(R < R_F(x(R,t)) \mid s) > \gamma \Leftrightarrow G(R_F(t) \mid s) \ge \gamma$ where $G(. \mid s)$ is the c.d.f. of R conditional on signal s

 \triangleright with $t_0/R_F = R_S$, i.e. $t_0 = R_S + F^{-1}(k)$ if $t \ge t_0$, "too many" failures \rightarrow need for a LOLR

STRATEGIC COMPLEMENTARITY

- \triangleright natural to assume $G(r \mid s)$ decreasing in s: the higher s, the lower the proba that R < r
- $\Rightarrow P(s,t) \text{ decreasing in } s, \text{ increasing in } t$ $\left(P(s,t): \text{ proba. of failure when signal } s \text{ and threshold } t\right)$

$$\Rightarrow P(s,t) > \gamma \Leftrightarrow s < \overline{s} \text{ with } \overline{s}/P(\overline{s},t) = \gamma, \text{ i.e. } \overline{s} = S(t)$$

with $S'(t) = -\frac{\partial P/\partial t}{\partial P/\partial s} \ge 0$

 \Rightarrow a higher threshold t BY OTHERS induces a manager to use a HIGHER THRESHOLD also

BAYESIAN EQUILIBRIUM (1)

- ▷ we look for a **STRATEGY** such that the equilibrium is consistent with the **BELIEFS**
- \triangleright Managers with draw if $P(s,t) > \gamma$ and with draw if s < t
- \triangleright CONSISTENT iif $t^*/P(t^*, t^*) = \gamma$
- \triangleright then, as P(s,t) decreasing in s:
 - ► $s < t^* \Rightarrow P(s, t^*) > \gamma \Rightarrow$ withdraw
 - ► $s > t^* \Rightarrow P(s, t^*) < \gamma \Rightarrow$ not withdraw

BAYESIAN EQUILIBRIUM (2)

\triangleright The equilibrium (R_F^*, t^*) , where

t* is the equilibrium WITHDRAWAL THRESHOLD
 R^{*}_F is the equilibrium RETURN THRESHOLD
 is therefore determined by:

$$\begin{cases} G(R_F^* \mid t^*) = \gamma \\ R_F^* &= R_S \left(1 + \lambda \left[\frac{F(t^* - R_F^*) - k}{1 - k} \right]_+ \right) \end{cases}$$

 \triangleright 1st eq: if $s = t^*$, $\mathbb{P}(R < R_F^* \mid s) = \gamma$ (def of t^*)

▷ 2nd eq.: given t^* , R_F^* is the return threshold, below which failure occurs (def of R_F^*)

GAUSSIAN CASE

 \triangleright to go further, we assume $\triangleright R \sim \mathcal{N}\left(\overline{R}, 1/\alpha\right)$ $\triangleright \varepsilon \sim \mathcal{N}(0, 1/\beta) \Rightarrow F(x) = \Phi(\sqrt{\beta}x)$ \triangleright we look for $G(R \mid s) = G(R \mid R + \varepsilon)$. As $\blacktriangleright R + \varepsilon \sim \mathcal{N}\left(\overline{R}, 1/\alpha + 1/\beta\right)$, and \blacktriangleright cov $(R, R + \varepsilon) = Var(R) = 1/\alpha$ \triangleright we have $R \mid R + \varepsilon \sim \mathcal{N}\left(\frac{\alpha \overline{R} + \beta s}{\alpha + \beta}, \frac{1}{\alpha + \beta}\right)$ $\triangleright \text{ that is } G\left(R_F^* \mid t^*\right) = \Phi\left(\sqrt{\alpha + \beta}R_F^* - \frac{\alpha \overline{R} + \beta t^*}{\sqrt{\alpha + \beta}}\right)$

THE EQUILIBRIUM

▷ The equilibrium is then characterized ▷ by a pair (t^*, R_F^*) such that

 $\begin{cases} \Phi\left(\sqrt{\alpha+\beta}R_{F}^{*}-\frac{\alpha\overline{R}+\beta t^{*}}{\sqrt{\alpha+\beta}}\right)=\gamma\\ R_{F}^{*}=R_{S}\left(1+\lambda\frac{\Phi\left(\sqrt{\beta}(t^{*}-R_{F}^{*})\right)-k}{1-k}\right) \end{cases}$

 \triangleright and we can prove (proof omitted) that

PROPOSITION. When β (precision of private signal) large enough relative to α (prior precision):

$$\beta \ge \frac{1}{2\pi} \left(\frac{\lambda \alpha D}{I}\right)^2 \equiv \beta_0$$

unique t^* such that $P(t^*, t^*) = \gamma$. The investor's game then has a unique equilibrium: a strategy with threshold t^* .

 \triangleright as

COORDINATION FAILURE

 \triangleright Failure caused by illiquidity (coordination failure) if $t^* > t_0$

- \triangleright with t^* such that: $\Phi\left(\sqrt{\alpha+\beta}R_F^* \frac{\alpha\overline{R}+\beta t^*}{\sqrt{\alpha+\beta}}\right) = \gamma$
- ▷ if $t^* \leq t_0$: NO COORDINATION FAILURE, i.e. $R_F^* = R_S$. In this case:

$$t^* = \frac{1}{\beta} \left((\alpha + \beta) R_S - \sqrt{\alpha + \beta} \phi^{-1}(\gamma) - \alpha \overline{R} \right)$$
$$t_0 = R_S + \frac{1}{\sqrt{\beta}} \phi^{-1}(k)$$

 \triangleright an equilibrium with $t^* \leq t_0$ occurs iif:

$$(\alpha + \beta)R_S \le \sqrt{\alpha + \beta}\phi^{-1}(\gamma) + \alpha\overline{R} + \beta R_S + \sqrt{\beta}\phi^{-1}(k)$$

LIQUIDITY RATIO AND COORDINATION FAILURE

 \triangleright That is iif:

$$k \ge \Phi\left(\frac{\alpha}{\sqrt{\beta}}\left(R_S - \overline{R}\right) - \sqrt{1 + \frac{\alpha}{\beta}}\Phi^{-1}(\gamma)\right) \equiv \overline{k}$$

PROPOSITION. There is a critical liquidity ratio \overline{k} of the bank such that, for $k = \frac{K}{D} \ge \overline{k}$ ONLY INSOLVENT BANKS FAIL (there is no coordination failure).

 \triangleright if $k < \overline{k}$ solvent but illiquid banks fail

PROBABILITY OF FAILURE

 \triangleright In this last case R_F^* is defined by:

$$\begin{cases} \Phi\left(\sqrt{\alpha+\beta}R_F^* - \frac{\alpha\overline{R}+\beta t^*}{\sqrt{\alpha+\beta}}\right) = \gamma \\ R_F^* = R_S\left(1 + \lambda \frac{\Phi(\sqrt{\beta}(t^*-R_F^*)) - k}{1-k}\right) \\ \Leftrightarrow \begin{cases} -\sqrt{\alpha+\beta}\Phi^{-1}(\gamma) + (\alpha+\beta)R_F^* - \alpha\overline{R} - \beta t^* = 0 \\ t^* = R_F^* + \frac{1}{\sqrt{\beta}}\Phi^{-1}\left(\frac{1-k}{\lambda R_S}\left(R_F^* - R_S\right) + k\right) \\ \Leftrightarrow \alpha\left(R_F^* - \overline{R}\right) - \beta\Phi^{-1}\left(\frac{1-k}{\lambda R_S}\left(R_F^* - R_S\right) + k\right) - \sqrt{\alpha+\beta}\Phi^{-1}(\gamma) = 0 \end{cases}$$

 \triangleright As the l.h.s is decreasing in R_F^* for $\beta \ge \beta_0$ we have

PROPOSITION. R_F^* – and therefore the proba of **FAILURE** – is decreasing in the liquidity ratio k, the critical withdrawal probability γ , and of the expected return \overline{R} and increasing in the fire-sale premium λ and the face value of debt D.

HOW TO AVOID FAILURE CAUSED BY ILLIQUIDITY?

- ▷ theoretical possibility of a solvent bank being illiquid as a result of coordination failure on the interbank market.
- ▷ 2 possibilities (for a central bank or a gvt) to eliminate that:
 ▶ lower bond on the liquidity ratio k: k
 - decrease λ through:
 - LIQUIDITY INJECTION (as for ex after Sept 11) DISCOUNT-RATE lending (ex. Fed '08, low rate but stigma)

DISCOUNT-RATE LENDING (1)

▷ fixing $k \ge \overline{k}$: costly in terms of "returns": $I + K = 1 + E \Rightarrow$ high K means LOW INVESTMENT

\triangleright what to do if $k < \overline{k}$?

- ► assume that the central bank lends at rate $r \in (0, \lambda)$ without limit, BUT only to **SOLVENT** banks
- Central bank not supposed to subsidize: r > 0and assumed to perfectly observe $R \leftarrow$ SUPERVISION
- \Rightarrow Optimal strat. for a bank = lend exactly $D(x k)_+$ \rightarrow failure in $\tau = 2$ iif

$$RI < (1-x)D + (1+r)(x-k)D$$

DISCOUNT-RATE LENDING (2)

$$\triangleright \text{ That is, as } R_S = \frac{D-K}{I} = \frac{D(1-k)}{I}, \text{ iif}$$
$$R < R_S \left(1 + r \frac{[x-k]_+}{1-k} \right) \equiv R^*$$

(same as R_F^* with r instead of λ)

- \Rightarrow fully **EFFICIENT** $(R^* = R_S)$ if *r* arbitrarily close to 0
- + central bank LOSES NO MONEY (loan repaid at $\tau = 2$) as only lends to solvent banks $(R > R_S)$

 \Rightarrow possible!

POSSIBLE EXTENSIONS

 \triangleright including moral hazard

- ▶ investment in risky assets requires supervision
- \blacktriangleright supervision effort by bank manager $e = \{0, 1\}, e = 1$ costly
- $\blacktriangleright e = 0 \Rightarrow R \sim \mathcal{N}\left(\overline{R_0}, \frac{1}{\alpha}\right); \quad e = 1 \Rightarrow R \sim \mathcal{N}\left(\overline{R}, \frac{1}{\alpha}\right)$ with $\overline{R} > \overline{R_0}$
- ► Result: the use of **SHORT-TERM** debt is optimal allowing withdraw at $\tau = 1$ discipline bank managers

 \triangleright ENDOGENIZING k = K/D (reserves chosen by the bank)

INSURANCE, FAILURE AND RESERVES see Rees, Gravelle and Wambach, The Microeconomics of Insurance, section 3.2

- > insurance = PROMISE (against a premium)
 to pay coverage in case of accident
- bow to make sure this promise is kept?
 i.e. the insurance has enough reserve to pay coverage?
- \triangleright has to ensure insurance doesn't fail
- \triangleright as banks: **CREDITORS** of insurance companies are policyholders
- \rightarrow CANNOT MONITOR their insurance company
- \Rightarrow Existence of solvency **RULES** and **REGULATION** authorities

THE MODEL

- \triangleright an insurer offers a contract to *n* **IDENTICAL** individuals same risk (distribution of claims identical), same preferences
- ▷ assume: **INDEPENDENT** risks (\rightarrow i.i.d.) not necessary to determine aggregate loss but simplifies
- $\triangleright \widetilde{C}_i$ distrib of ind claims i.i.d.: mean μ and variance σ^2 $\Rightarrow \widetilde{C}^n = \sum_{i=1}^n \widetilde{C}_i$ distrib of aggregate claims, random var of mean $n\mu$
- ⇒ if premium sets to μ ("fair" premium) on each contract and insurance costs are zero it will just **BREAK EVEN** ("rentable") in expected value: $\mathbb{E}(\text{Profit}) = \mathbb{E}(n\mu - \widetilde{C}^n) = n\mu - \mathbb{E}(\widetilde{C}^n) = 0$

THE NEED OF RESERVES

⊳ However

$$\text{Var}(\text{Profit}) = \text{Var}\left(\widetilde{C}^n\right) = \mathbb{E}\left(\left(\sum_{i=1}^n \widetilde{C}_i - n\mu\right)^2\right) \\ = \mathbb{E}\left[\left\{\sum_{i=1}^n \left(\widetilde{C}_i - \mu\right)\right\}^2\right] = \sum_{i=1}^n \mathbb{E}\left[\left(\widetilde{C}_i - \mu\right)^2\right] \\ = n\sigma^2$$

is positive and linearly **INCREASING IN** n \triangleright no convergence: $\forall n$, we can have $\widetilde{C}_n <> n.\mu$

\Rightarrow to AVOID INSOLVENCY

(when claims costs exceed funds available to meet them) insurance have to carry **RESERVES**.

RUIN PROBABILITY (1)

- \triangleright reasonable to assume maximum cover C_{\max} per contract
- \Rightarrow maximum possible aggregate claims cost: nC_{max}
- $\Rightarrow \text{ if premium } P \text{ and reserves } K_{\max} = n(C_{\max} P):$ **ZERO PROBABILITY OF INSOLVENCY**
- ► However, **IN PRACTICE**:
 - proba. total claims near nC_{max} extremely small
 raising capital of K_{max} extremely costly
- $\Rightarrow \text{ insurers choose a so-called } \textbf{RUIN PROBABILITY } \rho \\ \text{ and given the distribution of } \widetilde{C}^n \text{ choose a level of reserves:} \\ K(\rho) = C_\rho nP \text{ with } C_\rho \ / \ \mathbb{P}\left(\widetilde{C}^n > C_\rho\right) = \rho \\ \end{cases}$

RUIN PROBABILITY (2)

 \triangleright reserves / proba. ρ to be insolvent

 \triangleright that is, when $P = \mu$ (fair premium)

How is ρ determined?

\triangleright Trade-off between

- ► the costs associated with the **RISK OF INSOLVENCY** depends on buyers' **PERCEPTIONS** of this risk
- \blacktriangleright and the cost of holding reserves
- ▷ explored in more detail in the **NEXT SECTIONS**

THE IMPLICATIONS OF THE LAW OF LARGE NUMBERS

- \triangleright let $C_1, C_2, ..., C_n$ the realizations of claims for n ind. (random sample from a distrib with mean μ and var σ^2)
- \triangleright let $\overline{C_n} = \frac{1}{n} \sum_{i=1}^{n} C_i$ be the sample mean or the average LOSS PER CONTRACT
- ▷ Law of Large Numbers $\rightarrow \forall \varepsilon > 0$, $\lim_{n \to \infty} \mathbb{P}\left(|\overline{C_n} \mu| < \varepsilon \right) = 1$: for sufficiently large *n*, virtually certain that the LOSS PER CONTRACT equals μ , mean of individual loss distribution

$$\triangleright$$
 Moreover, Var $\left(\overline{C_n}\right) = \mathbb{E}\left(\left(\frac{1}{n}\sum \widetilde{C_i} - \mu\right)^2\right) = \frac{1}{n}\sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n}$

 \Rightarrow the variance of realized loss per contract goes to 0 as $n \rightarrow \infty$

INTERPRETATION

▷ as the number of **CONTRACTS SOLD** becomes very large,

▷ risk that realized loss per contract exceeds fair premium becomes vanishingly small.

\approx ECONOMY OF SCALE

- ▶ although variance of aggregate claims increases with n \rightarrow the reserves have to increase in absolute amount)
- ► the required reserve per contract tends toward zero
- > required reserves increase LESS THAN PROPORTIONATELY
 with size of the insurer (number of contracts)

EXERCISE

Consider a portfolio of 400,000 identical contracts for which \triangleright the number of accidents per contract (N_i) can be approximated by a $\mathcal{P}(0,07)$

▷ the expected value of claims per accident $\mathbb{E}(C_{ij}) = 14500 \in$ ▷ with a standard error $\sigma(C_{ij}) = 130000 \in$

 $\triangleright N_i$ are assumed to be i.i.d ; C_{ij} are assumed to be indep. from N_i , $\forall j$; given N_i , C_{ij} are assumed to be i.i.d $\forall i, j$

► Calculate the fair premium of a contract

- ► Calculate the standard error of the annual claims on a contact
- ► Calculate the amount of reserves that makes the ruin probability lower than 5% (assuming fair premia)

OPTIMAL CHOICE OF RESERVES

see Rees and Wambach, The Microeconomics of Insurance, section 3.5

- \triangleright regulation: protect policyholders against risk of failure
- \triangleright **REVERSE PRODUCTION CYCLE** \rightarrow risk of fraud: once premiums paid insurer can **RUN OFF**
- \triangleright BUT large, well-established companies
 - ► that wish to remain in business for the LONG TERM
 - ► would not need detailed regulatory intervention,
 - ► to ensure they carry enough reserves to meet obligations
- \triangleright want to model these effects

THE KEY ASSUMPTIONS

1. LIMITED LIABILITY ("engagement limité")

- a shareholder is LIABLE for the debts of a company
 ONLY up to the value of his shareholding
- ⇒ unregulated insurer may find optimal to put NO RESERVES and fail as soon as claims exceed collected premiums (more so if reserves are costly)
- 2. INCREASING FAILURE RATE $\frac{d}{dC} \frac{f(C)}{1 - F(C)} > 0$

met by virtually all insurance loss-claims distributions

The model (1)

- \triangleright consider an insurance company in business for the long term
- \triangleright so taking decisions over an INFINITE TIME HORIZON
- \triangleright with a sequence of **DISCRETE TIME PERIODS** (say years).
- ▷ At the beginning of EACH YEAR
- \triangleright decide on a level of reserve capital K
- ▷ given the distribution of claims C: F(C)with (differentiable) density f(C), defined over $[0, C_{max}]$
- ▷ COSTLESS reserves: owns (enough) capital but has to decide whether to invest or to commit it in the insurance business

THE MODEL (2)

- \triangleright premium income *P* EXOGENOUS (independent of *K*) buyers do not perceive relationship reserves and insolvency and act AS IF NO SOLVENCY RISK
- $\triangleright P$ collected at the **BEGINNING** of the period and invested with K in **RISKLESS** asset (return r > 1)
- \Rightarrow At the end of the period assets: A = (P + K)r
 - ▶ if A > C: **REMAINS IN BUSINESS** and receives continuation value V (expected present value of returns from insurance business over all future periods)
 - ▶ if A < C: **DEFAULTS** A used to pay claims, loses V limited liability: doesn't pay claims above A

OPTIMAL RESERVES (1)

 $\triangleright C < C_{max} \Rightarrow$ can always choose to guarantee solvency $\triangleright QUESTION$: will insurers choose to stay solvent?

▷ it maximizes expected present value of future revenue ▷ i.e. chooses at each period $K \in [0, K_{max}]$ with $K_{max} = \frac{C_{max}}{r} - P$ that $\max_{K} V_0(K) = \int_0^A \left(\frac{V}{r} + K + P - \frac{C}{r}\right) f(C) dC - K$ (if solvent at t = 1: r(K + P) - C + V)

 \triangleright LIMITED LIABILITY \Rightarrow upper limit A if C > A: insolvent, pays out A, loses $V \Rightarrow$ integrand = 0

OPTIMAL RESERVES (2)

▷ infinite horizon: future identical at begin. of each period $\Rightarrow V = V_0(K)$ and:

$$V_0(K) = \left[\int_0^A \left(K + P - \frac{C}{r} \right) f(C) dC - K \right] / \left[1 - \frac{F(A)}{r} \right]$$

▷ put another way: at each period, **IF SOLVENT**, i.e. with proba F(A) gets $\left[\int_0^A \left(K + P - \frac{C}{r}\right) f(C) dC - K\right]$ next period (**DISCOUNTED** at rate 1/r):

$$V_0(K) = \sum_{t=0}^{+\infty} \left(\frac{F(A)}{r}\right)^t \left[\int_0^A \left(K + P - \frac{C}{r}\right) f(C)dC - K\right]$$

CORNER SOLUTION

PROPOSITION. If the claims distribution exhibits the increasing failure rate property then the solution of the optimization program of the insurer is a corner solution: K = 0 or $K = K_{max}$

PROOF: There is no interior maximum: if $\exists K^* \in (0, K_{\max})/V'_0(K^*) = 0$ then, under the assumption of increasing failure rate, $V''_0(K^*) > 0$

PROOF (1): FIRST ORDER CONDITION

$$V_0(K) = \left[\int_0^{r(P+K)} \left(K + P - \frac{C}{r}\right) f(C) dC - K\right] / \left[1 - \frac{F(r(P+K))}{r}\right]$$

$$\Rightarrow V_0'(K) = \frac{1}{\left(1 - \frac{F(A)}{r}\right)^2} \left((-1 + F(A) + 0) \cdot \left(1 - \frac{F(A)}{r}\right) \right) + f(A)V_0(K) \cdot \left(1 - \frac{F(A)}{r}\right) \right) \left(\frac{d}{dx} \int_0^{u(x)} f(x)dx = \int_0^{u(x)} f'(x)dx + f(u(x))u'(x) \right) \Rightarrow V_0'(K^*) = \frac{1}{1 - \frac{F(A)}{r}} \left[V_0(K^*)f(A) - (1 - F(A)) \right] = 0 \text{ where } A = r(P + K)$$

PROOF (2): SECOND ORDER CONDITION

$$\Rightarrow V_0''(K) = \frac{1}{(1 - \frac{F}{r})^2} \left(\left(V_0'(K)f + rV_0(K)f' + rf \right) \cdot \left(1 - \frac{F(A)}{r} \right) \right. \\ \left. + \left(V_0(K)f - (1 - F) \right) \cdot f \right) \\ = \frac{1}{(1 - \frac{F}{r})} \left[V_0'(K)f + rV_0(K)f' + rf + V_0'(K) \cdot f \right] \\ \Rightarrow V_0''(K^*) = \frac{r}{(1 - \frac{F}{r})} \left[V_0(K^*)f' + f \right]$$

 \triangleright what gives using the FOC $V_0''(K^*) = \frac{r}{(1-\frac{F}{r})} \left\lfloor \frac{(1-F)}{f} f' + f \right\rfloor$

▷ now the ASSUMPTION of increasing failure rate $\frac{d}{dC} \frac{f(C)}{1-F(C)} > 0$ gives $(1-F)f' + f^2 > 0$ ▷ $\exists K^*/V'(K^*) = 0$ and $V''(K^*) < 0$

WHICH CORNER?

- \Rightarrow no interior solution
- ▷ but continuous function on $(0, K_{max}) \Rightarrow \exists$ maximum ⇒ corner solution.
- \triangleright Which corner? COMPARE $V_0(0)$ and $V_0(K_{max})$

$$V_{0}(0) = \frac{F(rP)\left(rP - \overline{C_{0}}\right)}{r - F(rP)}$$
$$V_{0}(K_{\max}) = \frac{rP - \overline{C}}{r - 1}$$
with $\overline{C} \equiv \mathbb{E}(C)$ and $\overline{C_{0}} \equiv \frac{1}{F(rP)} \int_{0}^{rP} CdF = \mathbb{E}(C \mid C \le rP) < \overline{C}$

COMPARISON

► ADVANTAGE not to put any reserve:

- ► decrease expected claim costs $(\overline{C_0} < \overline{C})$
- ► due to LIMITED LIABILITY
- ▷ DISADVANTAGE
 - ► risk 1 F(rP) > 0 of going **OUT OF BUSINESS**
- ▷ In general, cannot say that a corner ALWAYS BETTER

LIMITATIONS OF THE MODEL

 \triangleright interest rate independent of the amount of capital raised

 \triangleright no costs associated with raising capital

▷ EXOGENEITY OF PREMIUM: willingness to pay for insurance independent of insolvency risk

► relaxed in the next model

FAILURE RISK AND INSURANCE DEMAND: see Rees, Gravelle and Wambach, Regulation of Insurance Markets, GPRIT 1999

- ▷ Assume now that policyholders **PERFECTLY OBSERVE** the reserves of their insurer
- ▷ and can **INFER** from it its failure probability
- ▷ First: simplest case of **JUST ONE** insurance buyer with income y (earned at end of period \rightarrow "borrow" P) loss distribution F(.) on $[0, C_u]$ and utility function u(.) with u' > 0 and u'' < 0

 \Rightarrow in the absence of insurance: expected utility:

$$\overline{u_0} \equiv \int_0^{C_u} u(y-C)dF$$

INSURANCE DEMAND

- \triangleright Assume insurer makes a "take-it-or-leave-it" offer
- \triangleright "full cover" (repayment=loss) at a premium P

 \triangleright However, the buyer observes K

 \triangleright so the premium has to satisfy "participation constraint":

$$\int_0^A u(y-rP)dF + \int_A^{C_u} u(y-C-rP+A)dF \geq \overline{u_0}$$

▷ note P_0 the MAXIMAL PREMIUM the buyer accepts when the insurer has NO CAPITAL: $A = rP_0$:

$$P_0: F(rP_0)u(y - rP_0) + \int_{rP_0}^{C_u} u(y - C)dF = \overline{u_0}$$

and P_u the MAXIMAL PREMIUM the buyer accepts when the insurer has MAXIMUM CAPITAL: $A = C_u$: $P_u : u(y - rP_u) = \overline{u_0}$

WHICH CORNER?

PROPOSITION. When the insurance buyer is fully informed about the insurer's choice of capital; the insurer's expected value is larger at (P_u, K_u) than at $(P_0, K = 0)$.

PROOF: we want to show that:

$$\frac{1}{r-1} \int_0^{C_u} (rP_u - C)dF > \frac{1}{r - F(rP_0)} \int_0^{rP_0} (rP_0 - C)dF$$

as r - 1 < r - F, a sufficient condition would be

$$rP_{u} - \int_{0}^{C_{u}} CdF > F(rP_{0})rP_{0} - \int_{0}^{rP_{0}} CdF$$

or $rP_{u} > F(rP_{0})rP_{0} + \int_{rP_{0}}^{C_{u}} CdF$

PROOF: JENSEN INEQUALITY (1)

$$\triangleright$$
 define $\tilde{P}/u(y - r\tilde{P}) = \frac{1}{1 - F(rP_0)} \int_{rP_0}^{C_u} u(y - C)dF$

 \triangleright Jensen: u(.) concave $\Rightarrow \forall$ random var. $\tilde{x} : u\left(\mathbb{E}(\tilde{x})\right) > \mathbb{E}(u(\tilde{x}))$

$$\Rightarrow r\tilde{P} > \frac{1}{1 - F(rP_0)} \int_{rP_0}^{C_u} CdF \Rightarrow (1 - F(rP_0))r\tilde{P} > \int_{rP_0}^{C_u} CdF$$

 \triangleright Moreover:

$$(1 - F(rP_0))u(y - r\tilde{P}) = \int_{rP_0}^{C_u} u(y - C)dF$$

= $\overline{u_0} - F(rP_0)u(y - rP_0)$
= $u(y - P_u) - F(rP_0)u(y - rP_0)$

$$\Rightarrow u(y - rP_u) = F(rP_0)u(y - rP_0) + (1 - F(rP_0))u(y - r\tilde{P})$$

PROOF: JENSEN INEQUALITY (2)

▷ Using again Jensen's inequality, we have: $rP_u > F(rP_0)rP_0 + (1 - F(rP_0))r\tilde{P}$ ▷ what implies using previous result that: $rP_u > F(rP_0)rP_0 + \int_{rP_0}^{C_u} CdF$

Q.E.D

(a similar result can be proved for any $K < K_u$)

INTUITION

- \triangleright Due to risk aversion (u(.) concave)
- \triangleright policyholder always prepared to pay more than fair premium
- ▷ to INSURE AGAINST INSURER'S INSOLVENCY
- \Rightarrow the insurer (risk-neutral) gains at selling this
- \Rightarrow he must put up enough capital to **REMAIN SOLVENT**

(For now only shown in the simple case of only one buyer)

GENERALIZATION TO N POLICYHOLDERS

\triangleright need more assumptions

- ► on individual risk
- ► on HOW A IS SHARED in case of failure

 \triangleright we assume

- ▶ i.i.d risk of losing L(< y) with proba p: $C \sim L * \mathcal{B}(n, p)$
- ▶ in case of failure by the insurer, each policyholder
 - receive indemnity in full w/ proba A/C
 - receive noting with proba (1 A/C)

PARTICIPATION CONSTRAINT

 \triangleright a policyholder WILLING TO PAY *P* for full coverage if:

$$(1-p)u(y-rP) + p \left\{ (1-\pi)u(y-rP) + \pi \left[(1-\theta)u(y-rP) + \theta u(y-rP-L) \right] \right\} \ge \overline{u_0}$$

with π : proba insurer insolvent given he suffers the loss and θ : proba he receives nothing in this case

▷ that is, noting $q \equiv p\pi\theta$ $(1-q)u(y-rP) + qu(y-rP-L) \ge \overline{u_0}$

RESERVE AND FAILURE

▷ Suppose insurer chooses reserves to MEET A GIVEN NUM-BER n < N of loses. Then:

$$q = p \sum_{m=n-1}^{N-1} \binom{N-1}{m} p^m (1-p)^{N-1-m} \left(1 - \frac{n}{m+1}\right)$$

 \triangleright can then prove equivalent result to previous Proposition

PROPOSITION. If buyers know the probability q that they will not be compensated, the insurer maximizes his expected value by choosing a capital K_m so that there is no default risk (q = 0).

 $K_m = \frac{N(L-rP_m)}{r} \le P_m$ largest acceptable premium for q = 0

PROOF (SIMILAR)

 \triangleright we want to show that, $\forall q > 0$

$$\frac{1}{r-1}N(rP_m - pL) > \frac{1}{r-(1-d)}N(rP_q - (p-q)L)$$

w/d: default proba; P_q : largest acceptable premium for q \triangleright as $q > 0 \Rightarrow r - 1 < r - (1 - d)$, sufficient to show that $rP_m \ge rP_q + qL$

 \triangleright by definition:

Hj. I

 \triangleright

$$u(y - rP_m) = (1 - q)u(y - rP_q) + qu(y - rP_q - L) = \overline{u_0}$$

and Jensen's inequality gives:

$$rP_m > (1-q)rP_q + q(rP_q + L) = rP_q + qL$$

INTUITION (SIMILAR)

- ▷ policyholders always willing to pay more THAN THE FAIR PREMIUM
- ▷ to insure against INSURER'S INSOLVENCY,
- \triangleright the insurer finds it **PROFITABLE** to sell him this
- \triangleright but **REQUIRES** to put enough capital to remain solvent

CONCLUSIONS

▷ if policyholders NAIVELY believe that the their insurer would REMAIN SOLVENT

- ► might be optimal for insurers **NOT TO HOLD RESERVES** and to bear **FAILURE RISK**
- \triangleright **BUT** if policyholders **PERFECTLY INFORMED** about insurers failure risk
 - ► always optimal for insurers to reduce this **RISK TO ZERO**
- \Rightarrow **PRINCIPE OF REGULATION**: provide policyholders w/ information about insurers failure risk
 - ► **DISCLOSURE** on capital, risk exposure,...
 - + minimal capital requirement \approx maximal failure proba

LIMITATIONS OF THE MODEL

- \triangleright interest rate independent of the amount of capital raised
- \triangleright no costs associated with raising capital
- ▷ impossibility to **RECAPITALIZE** at the end of each period **AFTER** claims realization, if A < C, insurer might want to raise some capital to **REMAIN SOLVENT**

ALLOWING FOR RECAPITALIZATION see Bourlès and Henriet, 2009

- \triangleright Recall: Why to regulate?
 - ► asymmetric information \rightarrow solution = **DISCLOSURE**
 - ► conflict of **INTEREST** betw/ shareholders & policyholders
- \triangleright for the insurer to fail:
 - ► not only **RESERVES** has to be **INSUFFICIENT**
 - ► but also has to be **SUBOPTIMAL** to recapitalize
- \triangleright Including shareholders in the model, new choices:
 - ▶ if solvent: take **DIVIDEND** or increase reserves (new shares)
 - ► if insolvent: failure or **RECAPITALIZE** (increase reserves)

 \Rightarrow information on reserve **NOT SUFFICIENT**

 \triangleright failure also depends on recap policy \Rightarrow CREDIBILITY ISSUE

FULL COMMITMENT

 \triangleright In such a model, the insurance company has to choose

► how much capital it holds (K)

• a **RECAPITALIZATION POLICY**: the interval of claims that will be indemnified (I)

► an ISSUANCE AND DIVIDEND POLICY

- ▷ moreover assume that capital is **COSTLY**: return on reserves lower than interest rate
- \triangleright From previous analysis:
 - ▶ if insurer can **COMMIT EX-ANTE** on a recap. policy
 - ▶ it commit NEVER TO DEFAULT
 - ► costly capital $\rightarrow K = 0, I = [0, +\infty)$

NO COMMITMENT

▷ If insurer cannot **CREDIBLY COMMIT** on *I*, **EX-POST**:

- ▶ insurer optimally default if amount needed to continue
- ▶ is larger than the present value of the insurance company

▷ When reserves are **UNOBSERVABLE**, we can show that

- ► insurer never holds reserves: $K^* = 0$
- ► shareholders take **DIVIDENDS** as soon as possible (never leave money in the insurance company)
- ► failure occurs optimally when claims exceed the value of the company

NO COMMITMENT - OBSERVABLE RESERVES

▷ When reserves are **OBSERVABLE**

- ▶ optimal to hold reserves: $K^* > 0$
- ▶ as it increases the maximal acceptable premium
- ► failure occurs optimally when claims exceed the value of the company
- **BUT**: threshold higher than in previous case: higher premium \rightarrow HIGHER VALUE
- \Rightarrow LOWER PROBA OF FAILURE

IMPLICATIONS FOR REGULATION

- ▷ **INFORMATION DISCLOSURE** gets part of the way
- ▷ RESERVE REQUIREMENT can also be useful: by ↑ the value of the company, it ↓ the probability of failure
- \triangleright But best regulation would be
 - ► TO MAKE CREDIBLE the commitment to always recap.
 - ► for ex. by setting a GUARANTEE FUND
 - but... would introduce MORAL HAZARD for shareholders (no incentives to hold reserves)

INSURANCE REGULATORY FRAMEWORK: SOLVENCY I

\triangleright "Current" European regulation: Solvency I

- \blacktriangleright established in 1973, amended in 2002
- ► SOLVENCY MARGIN REQUIREMENTS (SMR)
- ► financial guarantee in addition to provisions
- ▶ reserves > SMR = 4% of provisions + 3‰ of capital at risk

▷ SIMPLE AND ROBUST framework BUT

- ► no "true" MEASURE OF RISK taken by the insurer
- ► no **QUALITATIVE** requirement (quality of data)
- ► no **DIVERSIFICATION** effect
- ► no role for **INFORMATION**

INSURANCE REGULATORY FRAMEWORK: SOLVENCY II

\triangleright New European regulation: Solvency II

- ▶ Reform adopted in 2009 by the European Parliament
- ► came into effect on 1 January 2016 (after having been scheduled for 01/01/13 and 01/01/14...)

 \triangleright Relies as Basel accords on 3 pillars:

- ► Pillar I: **QUANTITATIVE** requirements
- ► Pillar II: **QUALITATIVE** requirements
- ► Pillar III: **DISCLOSURE** and transparency requirements

Pillar I Quantitative requirement	Pillar II Qualitative REQUIREMENT	Pillar III DISCLOSURE REQUIREMENT
A goot evaluation	N Internal control	▶ Poquiromont
Asset evaluation	▶ Internal control	for standardized
\triangleright Risk definition	\triangleright Risk management	information for
\triangleright Evaluations of	\triangleright Reinforcement and	market authority regulators. investors
► technical provisions	harmonization of	and policyholders
\blacktriangleright "target" capital (SCR)	external control	
▶ minimum capital (MCR)	at EU level	\triangleright transparency of
		financial reporting

TWO LEVELS OF CAPITAL REQUIREMENT

\triangleright SCR (Solvency Capital Requirement)

- ► capital required to ensure that insurance company able
- ► to ABSORB SIGNIFICANT UNEXPECTED EVENTS (bicentennial event)
- ► and GUARANTEE SOLVENCY in face of such events
- ► If capital < SCR: insurance is required to \uparrow capital
- ► **TARGETED** value of capital
- \triangleright MCR (Minimal Capital Requirement)
 - ► level for which insurer's activity pose an
 - ► UNACCEPTABLE RISK to policyholders
 - If capital < MCR: license withdrawn
 & liabilities transferred to another insurer

HOW IS THE SCR CALCULATED?

▷ RISK MEASURE

- ► V@R: VALUE AT RISK
- \blacktriangleright Potential loss to be suffered on a portfolio over a given period with a given probability α
- ► = quantile of loss-and-profit distribution X (asset variation; in our model X = nP - C): $\mathbb{P}\left(V @ R_{1-\alpha} < X \right) = \alpha$

▷ CALIBRATION of the SCR

- \blacktriangleright SCR = Value-at-Risk at 99.5% over 1-year
- ▶ failure probability on 1 year < 0.5%
- \blacktriangleright able to absorb bicentennial (adverse) event

VALUE AT RISK AT 99.5%

Is it a good measure of risk?