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Abstract

We analyze risk-taking behaviors of financial institutions linked through cross-

shareholding relationships. We endogenize risk exposure accounting for default risk by

modeling Value-at-Risk-based risk-management – that is targeted default probabilities

– in the presence of extreme risk on asset return. We relate risk-taking behaviors to

a centrality measure that captures the propagation of losses within the network, and

show that network integration increases risk-taking levels and expected return. However,

we show that network integration also results in larger expected shortfall, indicating

greater exposure to losses for creditors. We explore the impact of the cross-shareholding

network on the implementation of regulation, particularly through capital requirements,

and identify key institutions, those with the highest influence on aggregate investments

in risky assets. (JEL: C72; D85)
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1. Introduction

Financial systems play a crucial role in fostering long-term economic growth

by facilitating capital accumulation and efficient allocation of resources.1

As intermediaries, financial institutions navigate investment opportunities

that, albeit risky, promise substantial returns. However, their exposure to

extreme risks—events of high magnitude but low frequency—can precipitate

defaults with far-reaching consequences.2 Such failures not only result in

direct costs due to institutional defaults but also trigger widespread negative

externalities, undermining confidence in the financial system at large. Given

these stakes, institutions adopt risk management frameworks that balance

risk-taking incentives with stability constraints, often shaping their strategic

interactions within the financial network.

A common approach to managing firm-level risk exposure is Value-at-Risk-

based Risk Management (VaR-RM), which has been extensively documented

in literature.3 Under this approach, firms strategically calibrate their risk

exposure by setting a threshold on the maximum acceptable probability of

failure. Yet, risk management does not occur in isolation: the exposure of

one institution affects, and is affected by, the exposure of others within the

financial system. Network effects introduce strategic considerations that shape

risk-taking behavior. Diversification and risk-sharing mechanisms interact with

these strategic incentives, making the financial network a crucial determinant of

1. See, for instance, Levine (2005) and, more recently, Petra Valickova and Horvath (2015).

2. These extreme risks are at the heart of actual financial regulation. For example, Solvency

II, the directive that harmonizes European Union insurance regulation, calibrates prudential

regulation on the notion of bicentenary events.

3. See for instance Dowd (1998) and Saunders (1999). Bodnar et al. (1998) document

the use of VaR-RM practice in non-financial corporations in the US. Basak and Shapiro

(2001) stress that VaR estimates are crucial not just as decision-making tools but also for

controlling risk, aiming to keep market exposure within predefined levels.
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equilibrium outcomes. In this context, understanding how strategic interactions

influence risk-taking under VaR-RM is key to assessing financial stability.

Despite its importance, the influence of financial networks on the risk-taking

behavior of financial institutions through strategic interactions, particularly in

managing acceptable risk levels amid extreme risks, has not been thoroughly

explored. This paper fills this gap by examining how financial linkages affect

institutional approaches to risk management.

In this study, we explore financial networks through the lens of cross-

shareholding contracts, which are used for diversification, and have become

increasingly prevalent among financial institutions.4 According to regulatory

data, global systemically important institutions hold comparable amounts

of equity securities issued by other financial institutions relative to debt

securities.5 Both types of securities are used by the regulators to define

regulatory buckets and the corresponding capital requirements. We develop

a simple model that captures the essence of the strategic interaction among

risk-taking behaviors conveyed by the shareholding network.

We model a financial system exposed to an extreme risk event –

characterized by its high magnitude and low frequency – that poses a significant

threat to individual institutions by potentially inflicting substantial losses on

their risky assets. We study two scenarios regarding the systemic effect of

shocks. In the first scenario, a shock to a given institution has no effect on the

risky assets of other institutions. In the second scenario, the shock induces stress

4. Pollak and Guan (2017) argue that “Between 2000 and 2015 the number of institutions

with ownership in other institutions doubled in the United States. [...] Between 2011 and

2015 the total value of ownership of institutions by institutions increased by 211 percent”.

5. Cf. Federal Financial Institutions Examination Council (FFIEC) or the European

Banking Authority (EBA) database.
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throughout the entire financial system, reducing all institutions’ risky assets.6

Within this framework, we assume that financial institutions manage this

extreme risk based on Value-at-Risk-based Risk Management (VaR-RM). These

strategies involve setting a level of risk-taking that aligns with a predetermined

upper limit on the probability of default. This model allows to understand

how the structure of financial networks influences the risk-taking behaviors of

financial institutions through strategic interactions.

The model predicts that cross-shareholding networks create interdependen-

cies among financial institutions’ risk-taking decisions. When a shock hitting

a financial institution stays localized and doesn’t cause global stress to the

financial system, the network acts as a form of mutual insurance in the

face of a low-probability / high-impact risk. This combination of extreme

risk and cross-shareholding fosters strategic complementarities in risk-taking.

Conversely, when the shock creates a stress accross other institutions, the

insurance mechanism is less effective, and risk-taking decisions become strategic

substitutes.

We further explore these strategic interactions by introducing a centrality

measure that captures an institution’s position within the network and its

influence on risk-taking behavior. This measure considers both the benefits of

risk-sharing among well-connected institutions and the potential drawbacks

of negative feedback loops from distressed entities. Our analysis indicates

a nuanced relationship between network position and risk-taking. Still,

more integrated cross-shareholding networks – characterized by higher cross-

shareholdings levels – lead to increased risk-taking for all institutions when the

shock is localized and, on average, when the shock stresses the financial system.

Put another way, a more integrated network leads to higher expected return

(for all institutions when the shock is localized and on average when the entire

6. To simplify our analysis and maintain tractability, we intentionally exclude the

possibility of default contagion.
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system is stressed) for a given default risk. This implies that the positive effects

of increased integration through diversification outweigh the negative effects

through feedback loops, enhancing the resilience of the institution affected by

the shock and thereby encouraging increased risk-taking.

While networks can mitigate individual institutions’ risk through

diversification and support, we also show that they also magnify debt holders’

exposition to default. By increasing risk-taking for a given default probability,

the cross-shareholding network increases the loss given default, i.e. the expected

shortfall. We demonstrate that, when accounting for adjustments in risk-taking,

a more integrated network induces higher expected shortfall for all financial

institutions when the shock is localized, and on average when it stresses

the financial system. These results reveal a trade-off created by the cross-

shareholding network between risk-taking and institutional default risk on one

side, and debt-holder exposure to default on the other.

Finally, we show how, by adjusting liability-side balance sheet regulations,

prudential regulation can mitigate excessive risk-taking while encouraging

healthy levels of investment in risky assets. We also propose a ‘key-player’

policy approach on capital injection, pinpointing the specific institution where

targeted capital injections could optimally increase aggregate risk-taking

without impacting default probability, thereby enhancing the system’s stability

without compromising on necessary risk engagement.

Overall, our study sheds light on the intricate interplay between

cross-shareholding networks, risk management strategies, and regulatory

interventions, offering valuable insights into optimizing financial stability in

the face of catastrophic risks.

Relationship to the literature. Our study adds to distinct, although in some

respect complementary, strands of research. First, our paper contributes to

the fast-growing literature on cross-shareholding networks (see Brioschi et al.

(1989), Fedenia et al. (1994), or, more recently, Elliott et al. (2014)), and
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in particular it complements the line of work investigating endogenous risk-

taking by financial institutions. Galeotti and Ghiglino (2021) analyze how

cross-shareholding affects portfolio choices, in a model where firms choose to

allocate wealth between a risk-free asset and a personal risky project, assuming

away default. Focusing on risky projects with uncorrelated returns, risk-taking

behaviors remain independent in their framework. Still, financial linkages

alter investment decisions through diversification. In contrast, accounting for

default generates strategic interactions in risk-taking decisions through a

mutual insurance mechanism. In our context, the impact of financial networks

on risk-taking decisions takes into account the interdependencies in risk-

taking behaviors. Jackson and Pernoud (2019) incorporate both risk-taking

and default, but limited to examples with binary (and independent or fully

correlated) returns on the risky assets. Our paper is the first to study more

generally the impact of cross-shareholding networks on risk-management, in a

setup with possible institution defaults.

Our paper also adds to the literature on Value-at-Risk Risk Management

(VaR-RM) by linking financial networks to VaR-RM. The value-at-risk was

originally introduced by Markowitz (1952) and Roy (1952) in an attempt to

optimize profit so as to incorporate the risk of high losses. In its current form,

VaR was presented in 1989 by JP Morgan in their risk management tool called

the RiskMetrics, and is used in banking regulation. With a view to accounting

for debt-holders exposure to default, recent extension of the VaR approach

include the C-VAR (C for conditional); See Rockafellar and Uryasev (2000),

Rockafellar and Uryasev (2002).7 We show how VaR-RM can impact expected

shortfall when financial institutions are linked through cross-shareholding, and

in particular that denser networks leads to larger expected shortfall (for all

institutions under no stress, in average under stress).

7. As pointed out by Jorion (1998), VaR-RM can also underestimate risk due to its reliance

on short-term history and risk concentration.
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This paper also adds to the literature on prudential regulation. Prudential

regulation through cash or capital requirements has been shown to be a

useful and powerful tool to deal with excessive risk-taking by institutions

and to reduce default risk (Hellmann et al., 2000; Decamps et al., 2004).8

Implemented by financial regulators since the early 1990s (through the 1988

Basel Accord, also known as Basel I), such regulation gained in complexity

thereafter to account for specific risks (e.g., market risk, liquidity risk, and

operational risk). It dampens solvency risk without the social cost of bailouts,

or their effects induced through moral hazard when anticipated (Freixas and

Rochet, 2013). However, during the 2007 financial crisis, prudential regulation

proved insufficient to limit excessive risk-taking, notably because of the extent

of financial linkages – see, for example, the cases of Lehman Brothers and

American International Group discussed in Glasserman and Young (2016).

Current regulation treats financial linkages, whether in the form of equity or

debt holdings, in the same way. However, we show that cross-shareholding

networks can positively influence risk-taking without increasing the likelihood

of default. There is also a nascent literature on public intervention in financial

networks. Elliott et al. (2014) study the effect of reallocations of cross-holdings

that leave the market value of institutions unchanged and find that they

are not effective in avoiding the first failure. Leduc and Thurner (2017)

study the effect of transaction-specific taxes when institutions are connected

through debt contracts and subject to liquidity shocks and show that this can

reduce contagion. Finally, Demange (2018) and Jackson and Pernoud (2019)

discuss the optimal ex-post intervention, through bailouts or cash injection.

We complement these literatures by analyzing a prudential policy consisting

in a capital injection intervention taking into account the interdependent risk-

taking behaviors of financial institutions.

8. Cash requirements correspond to constraints on the asset side, whereas capital

requirements affect the liability side.
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We conclude by discussing the recent literature on contagion, namely,

the spread of shocks between linked institutions.9 Although we do not

incorporate contagion, our model has close connections to some papers in

that literature. The structure of risk we consider, with one large negative

shock hurting one institution at a time, is similar to Cabrales et al. (2017),

who model financial linkages as investments by institutions in each other’s

projects and analyze the optimal network structure depending on projects’

riskiness. A comparative statics on integration is also discussed in Elliott

et al. (2014), who consider additional frictions through default costs in a

model of linear cross-holdings.10 In all of the above papers, the initial risk

faced by each institution is exogenous, while our paper rather models shocks

endogenous to investment choices by institutions. A recent exception is Shu

(2024), who models unsecured inter-institution debt contracts, mostly on

regular networks, and obtains complementarities in risk-taking behaviors. The

mechanism generating complementarities in risk-taking behaviors is different

from ours. Shu (2024) models an inter-debt network in which limited liability

(referred to as cross-subsidies in Shu (2024)) gives incentives to an institution

to increase its level of risk-taking when an institution it is linked to defaults.

As banks default probability increases with risk-taking, this creates a strategic

complementarity. A distinct mechanism applies to our paper. Modeling a cross-

shareholding network rather than a debt network, the mechanism generating

strategic complementarities relies on the insurance device that the network

brings to a firm hit by a shock. Moreover, our work highlights both positive

9. The effect of financial networks on contagion, when institutions are linked through

debt contracts is analyzed in Allen and Gale (2000), Acemoglu et al. (2015), Glasserman

and Young (2016), Acemoglu et al. (2015), and Glasserman and Young (2016). For a recent

survey on the transmission of liquidity shocks in large networks, see Gai and Kapadia (2019).

10. Although they model links as shareholding, Elliott et al. (2014) view them as “debt

contracts around and below organizations’ failure thresholds” and assume that default costs

spread in the network.
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and negative aspects of cross-shareholding networks with respect to risk-taking

and the challenge they poses for public policies. It is particularly noteworthy

that the negative effects of financial networks, in our model, are independent

from any contagion considerations.

The remainder of this paper is organized as follows. The model is presented

in Section 2. In Section 3, we characterize the optimal levels of risk-taking under

VaR-risk management, we undertake a comparative statics on integration, and

we analyze simple network structures. Section 4 examines the situation in which

the shock induces a stress to all financial institutions. Section 5 explores the

impact of VaR-risk management on expected shorfall. Cash injection policy

is analyzed in Section 6. We conclude in Section 7. All proofs are relegated

to Appendix A. Appendix B examines risk-taking decisions in the absence of

VaR-RM. Appendix C explores the case where several firms suffer the shock at

once, and Appendix D analyzes directed cross-shareholding networks.

2. The model

We consider a network of n≥ 2 financial institutions potentially linked through

cross-shareholding. These institutions can be, for example, banks, insurance

companies or pension funds. We consider a two-period model in which every

institution is liquidated after asset return realization. This simple model allows

to capture the effects of cross-shareholding.

We introduce the following notation. Matrices are written in block and bold

letters, and vectors in lower case and bold letters; the superscript T stands for

the transpose operator. Numbers and entries of matrices are in lower case. We

let I be the identity matrix of order n; 0 and 1 represent the vectors of zeros

and ones of dimension n, respectively.

The financial network. At t = 0, each financial institution i ∈ I =

{1, 2, · · · , n} is financed by debt (or deposit) di, by equity held by outside
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investors ei, and by equity held by other financial institutions in the network.11

We let matrix P = (pij)i,j∈I2 represent the cross-equity holding network, where

pij represents the amount held by institution i in institution j. Throughout

the paper, the cross-equity holding matrix is exogenous, reflecting strategic

long run perspective.12 To isolate the role of the cross-shareholding network on

the level of risk taken by each institution, we focus on comparable institutions

in two ways. First, we focus on homogeneous external equities and debt, i.e.

ei = e, di = d for all i. Our whole analysis is straightforwardly generalized

to heterogeneous debt di and external equity ei. We relax this homogeneity

assumption in Section 6 on cash injection. Second, to neutralize resource effects

(that is the fact that some institutions may have larger amounts to invest

in financial assets than others), we assume PT1 = P1 = (pi)i∈I , meaning

that for each financial institution, the sum of incoming amounts held by other

institutions is equal to the sum of amount made in other institutions. We

relax this assumption in Appendix D and show that our main insights remain

valid qualitatively. By the assumption PT1 = P, the resource of each financial

institution is equal to e+ d. That resource is allocated between investment in

a risk-free asset (with normalized return equal to 1), xi ≥ 0, an investment in

a institution-specific risky asset, zi ≥ 0. In the following, we focus on the effect

of the cross-shareholding network on portfolio allocation (xi, zi).

The balance sheet of institution i at t = 0 (i.e., before realization of risk)

can then be represented as in Fig. 1 (left panel). This leads to the following

accounting equation at t = 0 (taking into account that
∑
j∈I

pij =
∑
j∈I

pji):

xi + zi = e+ d (1)

11. We disregard debt contracts among financial institutions.

12. Current regulatory requirements, which are based on annual reports of cross-

shareholdings, confirm a long-term perspective.
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Assets Liabilities

xi d
zi e∑
j pij

∑
j pji

Assets Liabilities

xi ρdi
µizi∑
j ajivj vi

Figure 1. Balance sheet of financial institution i. Left panel: at t = 0. Right panel: at
t = 1.

Letting z = (zi)i∈I represent the profile of investments in risky assets, we

have z ∈ [0,e + d] from the balance sheet equation (1). At t = 1, returns

on investments are realized, institutions liquidated, and their values (if any)

are distributed among their shareholders. Let vi be the total equity value of

institution i. We denote by aij =
pij

e+
∑
k pkj

the share of the equity of institution

j held by institution i, that is, as pj =
∑
k pkj , aij =

pij
e+pj

. We define the

corresponding matrix of shares A = (aij)(i,j)∈I2 . We let ρ ≥ 1 represent the

deterministic (gross) cost on debt or deposit, and let µ̃ = (µ̃i)i∈I be the vector

of stochastic return on the risky asset of each institution. Figure 1 (right panel)

presents the balance sheet of institution i for a given realization µi of the risky

asset at t = 1.

In the event that xi + µizi − ρd+
∑
j 6=i
aijvj < 0, firm i defaults: all assets go

to debt repayment and equity-holders get no value. Because of limited liability

of equity holders (they are not liable for losses), the total equity value of

institution i is vi = max(xi + µizi − ρd+
∑
j 6=i
aijvj , 0).

Using the accounting equation (1) at t = 0, and considering the stochastic

nature of risky asset returns, the accounting equation for every surviving

institution i at t = 1 becomes

ṽi(µ̃,z) = max
(

(µ̃i − 1)zi + e− (ρ− 1)d+
∑
j 6=i

aij ṽj(µ̃,z), 0
)

(2)

Assumption 1. e− (ρ− 1)d > 0
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Under Assumption 1, the initial level of equity ensures that a financial

institution remains solvent when it does not invest in risky assets (i.e., vi > 0

when zi = 0).

The structure of risk. We focus on extreme and rare events, likely to put one

institution into financial distress. We therefore assume that only one institution

at a time can be hurt by this large negative shock. When not hurt, the return on

a bank risk asset is r > 1. However, with probability q0, a large negative shock

hits a single institution at random (with uniform probability). The return on

risky asset for the bank hit by the shock suffers a stochastic loss s̃, distributed

on the non-negative support [s0,+∞), s0 > r − 1 (leading to µi < 1), with

cumulative function H and average value s.

Formally, we assume that for every bank i,

µ̃i =

 r with probability 1− q0
n

r − s̃ with probability q0
n

(3)

We assume for now that the shock hitting one bank does not strongly

deteriorate the health of the financial system. We examine in Section 4 a more

general setup in which, once a firm is hit by the shock, other institutions also

suffer a negative shock on their returns.

Assumption 2. E(µ̃i) > 1 ∀i.

Assumption 2 implies that investment in the risky assets is still worthwhile,

implying in particular that the expected return on one institution’s investment,

which writes E(µi) · zi + xi, increases with its level of risk-taking zi.

Value-at-Risk Management. In this setup, the institution’s decision reduces

to allocating its resources e+ d between the risk free asset and its specific risky

asset. This optimal portfolio management by financial institutions is assumed to

follow a Value-at-Risk Management principle. That is, each financial institution
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maximizes its expected equity value E(ṽi),
13 under the constraint of complying

to a maximum acceptable probability of default.14 To isolate pure network

effects, the acceptable default probability is assumed to be homogeneous across

institutions. We denote this common maximal acceptable probability of default

by β (e.g., that value can be set by the regulator). The model can easily be

extended to heterogeneous values βi, to account for individual characteristics,

such as institution size. Each institution i then solves:

max
zi∈[0,ei+di]

E
(
ṽi(µ̃,z)

)
(4)

s.t. P(ṽi(µ̃,z) = 0) ≤ β

Note that ṽi(µ̃,z) = 0 when (µ̃i − 1)zi + e− (ρ− 1)d+
∑
j 6=i aij ṽj(µ̃,z) ≤ 0.15

Focusing on environments in which the managerial constraint is binding for

all institutions (that is in which β is low enough),16 we study in the following

13. Managers’ and equity-holders’ objectives are assumed to be aligned. We thus ignore

agency issues inside the institution.

14. The Value-at-Risk of financial institutions is taken into account by financial regulators;

e.g., in Basel III and Solvency II. The value at risk is defined by the Basel Committee on

Banking Supervision as “A measure of the worst expected loss on a portfolio of instruments

resulting from market movements over a given time horizon and a pre-defined confidence

level” (BCBS, 2019).

15. Our results are insensitive to institutions considering their external equity value

(referred to as market value by Elliott et al. (2014)): vi · e/
(
e+

∑
k∈I pki

)
, which is

proportional to their total equity value.

16. The upper bound on β for which the constraint is binding depends on the cross-

shareholding network. For any institution i, β has to be lower than the probability that

institution i has a negative value when receiving the shock and given risk-taking levels are

set at their upper bounds; I.e., β < q0
n
P
(
s > αi

)
, where αi = 1

mii

∑
kmik((r − 1)(e+ d) +

e− (ρ− 1)d) with M = (I−A)−1; or, letting H be the cumulative distribution of the shock

s, β < q0
n

(1−H(αi)). A sufficient condition on the maxi αi follows directly.
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risk-taking levels such that:

P(ṽi(µ̃,z) = 0) = β ∀i (5)

As is clear from the above program, the risk-taking level chosen by each

institution depends on the entire cross-shareholding network A.

Remark 1. Appendix B provides an upper bound on the probability of

occurrence of the adverse event for which, when not constrained by value-at-risk

risk management, institutions take the maximum amount of risk.

3. Risk-taking under Value-at-Risk Management

In this section, we solve the system of optimal risk-taking under VaR-RM in a

context where the shock hitting a financial institution does not imply a stress

on the financial system, and we undertake a comparative statics analysis with

respect to the level of integration of the cross-shareholding network.

3.1. Characterization

We describe how VaR-RM shapes institutions’ risk-taking. As the negative

shock only hits one institution at time, under Assumption 1, a financial

institution can only default in cases it is hit by the large negative shock on

its asset; and in that case, the values of the other institutions are necessarily

positive (as r > 1). We highlight that in these circumstances, the financial

network favors risk-taking.

We define matrix M = (I − A)−1, and matrix C with null diagonal

(cii = 0) and off-diagonal entry cij =
mij
mii

. The Bonacich centrality of the cross-

shareholding matrix, b = (bi)i∈I = (I−A)−11, will prove key in our analysis.

It measures the influence of each institution on another by aggregating all the

paths linking the two, where paths are weighted by the product of involved

shares. This centrality measure takes a simple form here:
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Observation 1. For all P such that PT1 = P1 = (pi)i∈I , and all e, we have

bi = 1 + pi
e .

We pursue with the characterization of risk-taking behaviors. Assumption

1, together with r > 1, guarantees that vi is positive when institution i is not

hit by the large negative shock. Default of institution i may occur only if it

suffers the shock. Institution i’s value-at-risk constraint then corresponds to the

probability of not surviving to the adverse shock being equal to β. Formally

the VaR-constraint of institution i writes:

q0
n
.P

(r − s̃− 1)zi + e− (ρ− 1)d+
∑
j 6=i

cij [(r − 1)zj + e− (ρ− 1)d]︸ ︷︷ ︸
ṽi | µi=r−s̃, µj=r ∀j 6=i

≤ 0

 = β (6)

Define t1−nβq0
as the (1 − nβ

q0
)th quantile of the distribution of s̃ and `β =

r − t1−nβq0
; `β can then be understood as the value-at-risk at level (1− β) of a

unit investment in risky asset (see footnote 14). A low value of `β then reflects

tight risk-management (a low value of β) or large market risk (a distribution

of s̃ with heavy right tail). The equilibrium is then defined by

(`β − 1)zi + e− (ρ− 1)d+
∑
j 6=i

cij [(r − 1)zj + e− (ρ− 1)d] = 0 ∀i (7)

To address interesting cases, we assume that the value-at-risk of each

institution, `β , is bounded from above:

Assumption 3. `β < 1.

Assumption 3 corresponds to tight risk-management as it leads to a

sufficiently low value of the maximum acceptable default probability β.17 Note

17. In the current regulation, β is set to 1% in the financial sector (Basel II) and 0.5% in

the insurance industry (Solvency II).
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that, when `β > 1 the VaR-constraint is never binding: the default probability

is lower than β whatever zi ∈ [0, e+ d] and institutions put all their resource

to the risky asset. Let εβ = r−1
1−`β , which is positive under Assumption 3. We

obtain that optimal risk-taking levels solve, for all i:

zi − εβ
∑
j 6=i

cijzj =
e− (ρ− 1)d

1− `β
bi
mii

(8)

and, as εβ > 0, the risk-taking levels under VaR-RM are strategic complements.

This pattern of strategic complementarities stems from the fact that as one

institution suffers a negative shock, the other institutions in the network always

provide support to institution i through cross-shareholding links. Since the

value received by institution i through its shares in the financial system is

increasing in other institutions’ investment in their risky assets (as r > 1),

the higher this investment, the more institution i receives in case of shock.

Institution i’s investment in its risky asset can then be higher while maintaining

the same default probability. We observe that the risk-taking level under

VaR-RM for an isolated institution is z∗i = e−(ρ−1)d
1−`β , which is positive under

Assumptions 1 and 3.

The complementarities of the interactions, together with the upper bounds

on values of zi, guarantee the existence of a solution z∗ to the system of

programs (2) ∀i. Assumptions 2 to 3 guarantee that the solution is unique and

positive (see Belhaj et al., 2014). Some levels of risk-taking can still reach the

upper bound e + d. Now, considering the system of best-responses functions

BR, with BRi(z) = εβ
∑
j 6=i cijzj + e−(ρ−1)d

1−`β
e+pi
e mii

∀i, any interior solution

satisfies z∗ = BR(z∗). We can then focus on interior solutions through the

following assumption.

Assumption 4. BR((e+ d)1) < (e+ d)1.
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Through complementarity in risk-taking levels, Assumption 4 guaranties

that the VaR-RM imposes a binding constraint for all institutions. The risk-

taking behaviors are then given by the following theorem:

Theorem 1. Under Assumptions 1 to 4, there is a unique solution to the

set of programs (2). This solution is interior, risk-taking levels are strategic

complements and given by

z∗ =
e− (ρ− 1)d

r − 1

[
(1 + εβ)(I− εβC)−11− 1

]
(9)

The interior solution z∗ builds on a centrality measure, (I − εβC)−11,

that expresses institutions’ risk-taking levels as a function of their position

in the (weighted) network of cross-shareholding A – recall that cij =
mij
mii

where M = (I −A)−1. This centrality echoes Bonacich centrality presented

in Observation 1 (as b = M1), but self-loops also play a role in relation with

the adverse event. On the one hand, central institutions benefit from other

institutions’ values in case of shock, which tends to increase their risk-taking

level; on the other hand, following a shock, the network also amplifies the loss in

value of the shocked institution through feedback effects. This is why self-loops

play a role: if a given firm is hit by a shock, the value of those institutions with

cross-investments in it decrease, which tends to decrease its own value. The

centrality measure presented in Theorem 1 captures these complex networked

interactions between the shocked institution and the other institutions.

To illustrate the distinction between Bonacich centrality, that drives

institutions’ values, and the centrality that drives risk-takings under VaR-RM,

consider the network depicted in Figure 2. In that example, we let G = (gij),

with gij ∈ {0, 1}, represent the binary network supporting cross-holding in

equities: we set pij = p · gij and assume GT = G. Denoting by δi =
∑
j gij the

degree of institution i, we get pi = pδi. The degree of institution 3, and thus

its Bonacich centrality (by Observation 1), is larger than that of institution 4,

but its risk-taking level is lower.
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Figure 2. Bonacich centrality and risk-taking. We set pij = p · gij and GT = G. For ρ =
1.4, e = 200, d = 200, p = 20, `β = 0.6, r = 1.7, z∗ ' (887, 445, 761, 765, 765, 445, 765, 445).
Here z3 is lower than z4 whereas the Bonacich of institution 3, which is aligned with its
degree, is larger.

This tradeoff is even more salient under tight risk-management. We obtain

the following corollary:

Corollary 1. When risk-management is tight (εβ = r−1
1−`β → 0), the risk-

taking level of institution i: z∗i is proportional to the ratio bi
mii

= e+pi
e mii

.

Bonacich centrality aggregates the share of other institutions’ values held

by one institution (bi =
∑
jmij and M =

∑∞
q=0 Aq). Institutions with higher

Bonacich centrality receive more from others through the cross-shareholding

network and can therefore take more risk for a given default probability. Now,

the network may also make an institution more exposed to its own value, and

therefore to its own level of risk-taking, through self-loop (mii). Institutions

with higher self-loop centrality then suffer more from a shock on their risky asset

and can therefore take less risk (for a given probability of default). Corollary
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1 states that under tight risk-management (i.e., a large value-at-risk `β in

absolute term: εβ → 0 when `β → −∞), risk-taking decisions result from a

trade-off between these two effects.

We also observe that, on regular networks, for which Bonacich centralities

are homogeneous, risk-taking levels can be differentiated, when self-loop

centralities differ. Furthermore, the ratio bi
mii

that stems from the cross-

shareholding network is not necessarily favorable to more central institutions.

The next example depicted in Figure 3 illustrates that the ordinal ranking

of this ratio can differ from the ranking of degrees; in this example, we set

pij = p · gij and assume GT = G.

Figure 3. In this network, degree and ratio bi
mii

are not aligned. We set pij = p · gij and

GT = G. Here, parameters e = p = 20 have been used to generate the cross-shareholding
matrix. The profile of ratio is (3.62, 4.45, 5.02, 5.26, 5.16, 4.51, 4.51). Whereas institution

5’s degree is larger than that of institution 4, we have b5
m55

< b4
m44

.



Belhaj, Bourlès & Deröıan. Risk-taking in financial networks 20

Among all network structures, core-periphery networks18 have been shown

to be reasonably representative of real financial networks, both in terms of inter-

institution lending; see, e.g.,Craig and von Peter (2014) and cross-shareholding

Rotundo and D’Arcangelis (2014). The simplest case is perhaps that of an

undirected star network (i.e., the core is reduced to a single institution). We

find:

Proposition 1. Consider Assumptions 1 to 4. In an undirected star network,

the risk-taking level of the central institution is higher than that of the peripheral

institutions.

The proof of Proposition 1 rests on the specification of (asymmetric) matrix

A. We first prove that the ratio bi
mii

for the center is greater than in any

peripheral institution.19 By Corollary 1, this statement proves the result for

sufficiently large negative shocks. We then extend the proof to arbitrary values

of εβ by using the ranking of centralities in an argument by induction.

Remark 2 (Multiple shocks). Allowing for more than one shock makes the

network less useful to the institutions suffering the shocks, thereby leading to

more restrictions on risk-taking. See Appendix C for more details.

3.2. Comparative statics on network integration

By network integration we mean an increase in the matrix of shares A. Such

integration can arise for various reasons. For instance, an increase in the

18. Core-periphery networks are networks in which highly interconnected nodes – called

the core – coexist with nodes loosely connected (both to the core and among themselves) –

called the periphery.

19. The ratio of Bonacich centrality over self-loop centrality is not necessarily favorable

to central institutions in linear-in-sum models where a sum of row can exceed unity. For

instance, in a star network, this ratio can be favorable to peripheral agents under sufficiently

high values of interaction.
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matrix of cross-equities P leads to an increased matrix of shares A when the

external equity e is sufficiently large.20 Similarly, when equity investments are

homogeneous across financial institutions (i.e., pij ∈ {0, p}), an increase of the

amount p invested in other institutions entails greater integration.

How does more integration - an increase in the cross-shareholding matrix A

- affect risk-taking under VaR-RM? Increasing shareholding has an ambiguous

effect a priori: (i) it propagates the negative shock on one institution’s asset

to the whole network, but (ii) it propagates the (necessarily positive) value of

other institutions to the institution hit by the negative shock. We find:

Proposition 2. Consider Assumptions 1 to 4. An increase of the cross-

shareholding network A increases optimal risk-taking for all institutions.

By Proposition 2, the adverse increased feedback effects are always

dominated by the positive increased complementarities helping institutions

to survive to the bad shock. One implication of this proposition is that

every nonempty shareholding network leads to high levels of risk-taking, and

therefore higher expected returns, for every institution with regard to the no-

shareholding case (i.e., the empty network).

Remark 3 (Directed shareholding network). Directed shareholding networks

(that is, relaxing the assumption PT1 = P1) bring a resource effect in the

accounting equation of the institutions’ balance sheet: institutions with more

investors benefit from higher resource. Taking into account this resource effect

adds a term in the risk-taking levels under VaR-RM z∗. Some of our results are

kept unchanged: central institutions in directed stars take more risk under VaR-

RM, and simulations over a large number of networks generated by popular

20. Assume P′ > P. Then, a′ij > aij if and only if e > ēij =
pijP

′
j−p

′
ijPj

p′ij−pij
. Taking

e > max
(i,j)

ēij guarantees A′ > A.
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random network generation models confirm that more integration fosters risk-

taking in general (see Appendix D for more details).

4. A shock stressing the financial system

In the benchmark model presented above, the shock hitting an institution does

not lower others’ asset returns. Now assume that, once a firm is hit by the

shock, the system enters into stress in the sense that the other institutions also

experience bad returns (indirect economic mechanisms, as fire-sale, can explain

this phenomenon). We show in the section that when the stress is large – leading

to negative returns for all institutions – the nature of strategic interactions is

qualitatively affected, and risk-taking decisions become strategic substitutes.

However, the analysis reveals that the network still enhances risk-taking levels

and expected returns with respect to the no-network case.

We model a stressed financial system as follows. With probability 1− q0,

the system is not stressed, and the return on every institution’s risky asset

is r > 1. With probability q0, the return on the risky investment of every

institutions falls to r < r, and a large negative shock hits a single institution at

random with uniform probability. The institution hit by the shock still suffers

a stochastic loss s̃, now distributed on the non-negative support [s′0,+∞),

s′0 > r − 1 (leading to µi < 1), with cumulative function H ′ and average value

s′.21 Formally, we assume that for every institution i,

µ̃i =


r with probability 1− q0
r with probability n−1

n q0

r − s̃ with probability q0
n

(10)

21. This structure of risks echoes that of Cabrales et al. (2017), who model rare and

large shocks on gross return through a deterministic return with fixed probability and two

alternatives with either a small or a large shock.
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Figure 4 illustrates the structure of the stochastic return on institution i’s risky

asset.

µ̃i

r
n−1
n

r − s̃
1
n

q0

r
1− q0

Figure 4. The stochastic return µ̃i of institution i

We assume that, in spite of the stress, institutions only default in states

of nature when they are hit by the negative shock. A sufficient condition for

this to hold is that, for all i, miiz
∗
i < min

j 6=i
mijz

∗
j . Put another way, we restrict

to settings in which each institution is more exposed to its own risk that to

others. Risk taking levels under VaR-RM then still satisfies equation (8), where

now εβ = r−1
1−`β . The magnitude of the stressed environment then proves key to

understand risk-taking interactions. Recalling that `β < 1, equation (8) implies:

Proposition 3. Consider Assumptions 1 to 4. When r > 1 (or εβ > 0), risk-

taking levels are strategic complements. When r = 1 (or εβ = 0), risk-taking

levels are independent. When r < 1 (or εβ < 0), risk-taking levels are strategic

substitutes.

Equilibrium multiplicity can be an issue with strategic substitutes in

general.22 Yet, in our model uniqueness still holds for any r ≥ `β (or εβ ≥ −1);

the proof is immediate from Proposition 6 thereafter; indeed, multiplicity

requires corners, which do not emerge here. Still, the nature of the interaction

affects the comparative statics on network integration (i.e. Proposition 2). A

22. See Bramoullé et al. (2014) for sufficient conditions in network games.
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higher network integration does not necessarily increase the optimal level of

risk-taking of each institution when r < 1. However, even in this case, this is

true on average:

Proposition 4. Consider Assumptions 1 to 4. An increase in the

shareholding matrix that keeps the risk-taking levels interior entails increased

average risk-taking on any network.

Therefore, whatever the value or r, network integration increases the

average expected return.

We examine now the impact of an increase of the default probability on

average risk-taking:

Proposition 5. Consider Assumptions 1 to 4. An increase in the default

probability β that keeps the risk-taking levels interior entails increased average

risk-taking on any network.

Therefore, even in the presence of a shock stressing the system, the cross-

shareholding network entails higher expected return and VaR-RM can be

understood as a trade-off between expected return and institution default

probability.

Table 5 illustrates the role of networks by comparing the average expected

return for various network structures when the shock is Pareto distributed or

exponentially distributed. Given the structure of risk, the expected return is

equal to (1 − q0)r + n−1
n q0r + q0

n (r − E(s̃)).23 We fix parameter values such

that λ = a−1
s0

, so that both probability distributions share the same mean (the

mean of the Pareto (resp. exponential) distribution is as0
a−1 (resp. s0 + 1

λ). Table

23. The Pareto distribution is such that ha(s) =
asa0
sa+1 over the interval [s0,+∞), for

a > 1; the exponential distribution satisfies hλ(s) = λe−λ(s−s0) over the interval [s0,+∞),

for λ > 0. For the Pareto law, E(s̃) = a
a−1

s0, while for the exponential law, E(s̃) = s0 + 1
λ

.
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Star Wheel two-Core Complete

Power law 210.54 210.56 210.64 210.79
Exponential 210.87 210.90 210.97 211.13

Figure 5. Average expected return of the financial system for different networks and
different probability distributions of the shock with same mean; n= 6, ρ= 1.1, d= 100, e=
100, r = 1.2, r = 0.7, p = 1, q0 = 0.1, β = 0.1, s0 = 1, a = 10, λ = a−1

s0
= 9.

5 shows that both network and nature of the shock have a strong impact on

the average risk-taking.

Moreover, we can show that the cross-shareholding network still increases

the risk-taking level of each institution as compared to the no-network case:

Proposition 6. Consider Assumptions 1 to 4. Consider any non-empty

and undirected cross-shareholding network. When r > `β (or εβ > −1), the

network favors risk-taking with respect to isolated institutions. When r = `β

(or εβ = −1), risk-taking levels are identical to those taken in isolation.

Proposition 6 highlights that, even when the entire financial system is

stressed, the existence of cross-shareholding linkages entails an increase in risk-

taking levels of every institutions. Indeed, even if it experiences bad return on

its investments, an institution still generates value as soon as it doesn’t default.

This is the case in our setting for all institutions that don’t experience the

large shock, who can then support the institution suffering the shock. From an

ex-ante point a view, each institution can then take more risk being in a cross-

shareholding network rather than being isolated, and preserve the defaulting

probability.24

24. To obtain Proposition 6, assuming PT1 = P1 is key.Otherwise, the existence of a non-

empty cross-shareholding network can lead to a decrease in the risk-taking level of some

institutions, due to the presence of a negative resource effect (see Appendix D).
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5. Impact of VAR-RM on the expected shortfall

In this section, we examine how VaR-RM impacts the expected shortfall of a

financial institution, a measure of the expected loss conditional on default. This

measure therefore reflects the cost-of-default for the debt-holders, i.e. deposit

insurance schemes in the case of banks.

Let ν̃i(µ̃,z) = xi + µ̃izi − ρdi +
∑
j 6=i
aij ṽj(µ̃,z) represent the difference

between asset and liability sides of institution i (see the balance sheet). Note

that, in contrast to ṽi, ν̃i can take negative values. Under risk-taking vector z,

the expected shortfall of institution i is given by

ESi(z) = E(ν̃i(µ̃,z)|ν̃i(µ̃,z) ≤ 0)

This is the expected not-honored debt due to a default caused by the shock

hitting the institution. This expression depends on the structure of the cross-

shareholding network and on the nature of the shock hitting the financial

system. To evaluate expected shortfalls when financial institutions comply

to VaR-RM risk-taking z∗, we need to specify the probability distribution

functions of losses s̃. We consider in the following exponential and power law

distributions. Recalling the equilibrium risk-taking z∗ given by equation (9)

and that `β = r − t1−nβq0
, we obtain:

Proposition 7. Consider Assumptions 1 to 4. Under Pareto distribution

ha(s) =
asa0
sa+1 over the interval [s0,+∞), for a > 1, the expected shortfall of

institution i under VaR-RM is given by

ESi(z
∗) =

(
r − `β
a− 1

)
miiz

∗
i

Under exponential distribution hλ(s) = λe−λ(s−s0) over the interval [s0,+∞),

for λ > 0, the expected shortfall of institution i under VaR-RM is given by

ESi(z
∗) =

miiz
∗
i

λ
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By Proposition 7, the cross-shareholding network has a sensible impact on

institutions’ expected shortfall. On the one hand, the network alleviates the

shortfall by transmitting to the shocked firm the positive values of others;

on the other hand through feedback loops it magnifies the losses in case of

default. The last effect is increasing in the risk-taking level of the shocked

institution. The impact of the cross-shareholding network on the expected

shortfall sharply depends on the nature of the shock. Still, more cross-

shareholding, i.e. augmenting matrix A, has an unambiguous effect for the

two considered distributions:

Corollary 2. For both Pareto and exponential distributions of the shocks,

network integration increases the expected shortfall of all financial institutions

when the shock is localized (r = r) and increases the average expected shortfall

of financial institutions when the shock induces a stress in the financial system

(r < 1).

This result is immediate using results from Proposition 2 and 4 as network

integration increases matrix M.

Table 6 illustrates the role of networks by comparing the average expected

shortfall for various network structures. As for Table 5, we fix parameter values

for probability distributions to share the same mean. Table 6 shows that both

Star Wheel two-Core Complete

Power law 7.3681 7.3699 7.3765 7.3861
Exponential 9.0944 9.0966 9.1047 9.1164

Figure 6. Average Expected Shortfall of the financial system for different networks
and different probability distributions of the shock with same mean; n = 6, ρ = 1.1, d =
1000, e = 1000, r = 0.7, p = 1, q0 = 0.1, β = 0.1, s0 = 1, a = 10, λ = a−1

s0
= 9.

network and nature of the shock have a strong impact on the average expected

shortfall. It confirms that average expected shortfall increases with network

integration for both shock distributions, as denser network are more likely to

amplify the negative impact of the shock. Although denser networks lead to



Belhaj, Bourlès & Deröıan. Risk-taking in financial networks 28

higher levels of investment (that is risk-taking) for the same probability of

default (Proposition 2), they also entail larger expected shortfall, that is higher

cost of default for depositors (and debt-holders).

This section highlights how risk-taking levels under VaR-RM, which requires

the institution’s default probability to remain sufficiently low, impacts debt-

holder exposure to default. The use of VaR-RM, leading to linear interactions,

provides a clean analytical treatment of interdependent risks. This analysis

could serve as a foundation for studying risk management under an expected

shortfall constraint. Indeed, choosing a level of risk-taking in response to

other institutions’ behavior is equivalent to selecting a default probability.

This probability directly influences the expected shortfall, as it is given

by the product of the expected loss and the default probability. In other

words, selecting an optimal level of risk-taking to limit expected shortfall

requires taking into account not only the associated default probability but

also the strategic interdependencies among risk-taking behaviors of financial

institutions that arise from this probability. Our results suggest that the

strategic interactions among risk-taking behaviors we identified persists under

such a risk management approach. However, conducting a fully analytical

study in this setting is challenging. The relationship between an institution’s

default probability and its expected loss strongly depends on the specification

of the probability distribution of shocks and is generally nonlinear for standard

distributions.

6. Capital injection

Financial regulatory authorities face a trade-off between boosting investment

and keeping default risks at acceptable levels. In this setting, they often

prefer regulating the liability side of institutions’ balance sheets (by setting

capital requirements) rather than directly imposing constraints on institutions’

investments in risky assets. To capture such policy, we allow for heterogeneous
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external equities e = (ei)i∈I and heterogeneous debt d = (di)i∈I . Then, in the

same vein as equation (9), risk-taking under VaR-RM is written as

z∗ =
1

r − 1

[
(1 + εβ)(I− εβC)−1 − I

]
(e− (ρ− 1)d)

We can rewrite the above equation as a relationship between one institution’s

initial risky asset (at t = 0, through zi) and its liability (through ei):

e(z) = (1− `β)(I−A)Mεz + (ρ− 1)d (11)

where matrix Mε has diagonal entry (i, i) equal to mii and off-diagonal entry

(i, j) equal to −εβmij . Then, for any value of z, e(z) represents the vector of

capital requirements that keep default probabilities below a prescribed level

(i.e., at value β). Regulatory capital requirement can then be understood as

specific VaR-RM constraints. Equation (11) specifies the minimum external

equity ei an institution needs so as to be allowed to invest zi in its risky asset.

Here, the capital requirement for a given institution depends on its leverage,

the overall risk profile, the cross-shareholding network, the value-at-risk `β , and

the asset returns of other institutions when it receives a shock (r). Importantly,

two firms with the same level of risk and leverage will not be required to hold

the same level of capital if they have different network positions.

States or regulators can then wish to boost aggregate risky investments,

that is aggregate expected return, while maintaining the same probability of

default, by injecting capital into to some financial institutions. Network effects

raise the question of the institution to target (we often refer to key-player

analysis). Concretely, suppose that, while keeping default risk at the prescribed

level corresponding to default probability β, the regulator chooses only one

institution in which to inject equity, with the objective of maximizing aggregate

investment in risky assets. The next proposition defines the institution that

should be targeted. Defining matrix W such that wii = mii and wij = −εβmij

for all i, j, and vector wS = W−11 = (wSi )i∈I , the impact of adding one unit of
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external equity to institution i on the total investment in risky assets is given

by

− 1

εβ
+

(
1 + εβ
εβ

)
miiw

S
i

We thus obtain:

Proposition 8. Consider Assumptions 1 to 4. The institution to target is

the one with the highest index miiw
S
i .

Proposition 8 is useful to determine the optimal institution to target on

the basis of network properties and the relative magnitude of the negative

shock (through parameter εβ) only. To illustrate, consider again the network

depicted in Figure 2, and take the same parameters. Then the optimal target,

that maximizes the index given in Proposition 8, is institution 1. Note that

this index is not necessarily aligned with risk-taking. For instance, institution

3’s index is higher than that of institution 4, whereas the ranking of respective

risk-taking levels is reversed.

7. Conclusion

This study reveals that the structure of cross-shareholding networks significant

impacts the risk-taking behaviors of financial institutions governed by Value-

at-Risk Management (VaR-RM). Specifically, the nature of interactions among

risk-taking decisions depends on the level of stress the financial system

experiences following a shock. In the absence of stress, risk-taking are strategic

complements; otherwise, they become strategic substitutes. We also find that,

irrespective of whether an extreme event induces stress on the financial system,

shareholding linkages increase risk-taking with respect to the no-network case.

Moreover, denser networks always lead to more investment in risky assets on

average. This positive effect of network integration is counterbalanced by a
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negative effect on expected-shortfall, meaning increased exposure to default for

depositors when institutions use VaR-RM.

Our conclusions are based on the assumption of no contagion effects.

However, in scenarios where the entire financial system faces systemic

risk, financial institutions relying on VaR-RM may not fully account for

their systemic risk exposure. Understanding how VaR-RM influences the

vulnerability of the financial system to systemic crises and default contagion

remains a complex issue for future research.

Moreover, our analysis shows the influence of the cross-shareholding network

on the trade-off between risk-taking (that is, expected return) and default

probability through VaR-RM approach. This trade-off is driven by the level

of Value-at-Risk chosen. Our study thus opens avenue regarding the effect of

network on optimal default probability, from an institution or a social point

of view. Such an analysis would require additional assumptions on the costs of

default and their distribution.
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Bramoullé, Y., Kranton, R., and d’Amours, M. (2014). Strategic interaction

and networks. American Economic Review, 104(3):898–930.

Brioschi, F., Buzzacchi, L., and Colombo, M. (1989). Risk capital financing

and the separation of ownership and control in business groups. Journal of

Banking and Finance, 13:747–772.

Cabrales, A., Gottardi, P., and Vega-Redondo, F. (2017). Risk Sharing and

Contagion in Networks. Review of Financial Studies, 30(9):3086–3127.

Craig, B. and von Peter, G. (2014). Interbank tiering and money center banks.

Journal of Financial Intermediation, 23(3):322–347.

Decamps, J.-P., Rochet, J.-C., and Roger, B. (2004). The three pillars of Basel

II: optimizing the mix. Journal of Financial Intermediation, 13(2):132–155.

Demange, G. (2018). Contagion in financial networks: A threat index.

Management Science, 64(2):955–970.

Dowd, K. (1998). Beyond Value at Risk: the New Science of Risk Management.

Eisenberg, L. and Noe, T. (2001). Systemic risk in financial systems.

Management Science, 47(2):236–249.

Elliott, M., Golub, B., and Jackson, M. O. (2014). Financial Networks and

Contagion. American Economic Review, 104(10):3115–3153.

Fedenia, M., Hodder, J., and Triantis, A. (1994). Cross-holdings: Estimation

issues, biases, and distortions. Review of Financial Studies, 7(C):61–96.

Freixas, X. and Rochet, J.-C. (2013). Taming Systemically Important Financial

Institutions. Journal of Money, Credit and Banking, 45:37–58.

Gai, P. and Kapadia, S. (2019). Networks and systemic risk in the financial

system. Oxford Review of Economic Policy, 35(4):586–613.

Galeotti, A. and Ghiglino, C. (2021). Cross-ownership and portfolio choice.

Technical Report 105194.
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Appendix A: Proofs

The following lemma – reminiscent of Eisenberg and Noe (2001) – establishes

the uniqueness of values satisfying the system of equations (2):

Lemma A.A.1. For any financial network (d,e,P), any investment profile

z ∈ [0,e + d], and any realization of risks (µi)i∈I , there is a single set of values

v solving system (2) for all i (with possible defaults).

Proof of Lemma A.A.1.

We define ηi = ei− (ρ− 1)di, hi = (µi− 1)zi + ηi and h = (hi)i∈I . Equation

(2) extended to heterogeneous ei, di then simply writes:

vi = max(hi +
∑
j 6=i

aijvj , 0) (A.1)

that is, in the absence of default (if vi ≥ 0 for all i):

v = Mh (A.2)

where M = (I − A)−1. The largest eigenvalue of any sharing matrix A is

lower than unity (as the sum of every column is lower than 1). Therefore,

(I−A)−1 =
∑∞
q=0 Aq.
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Consider the system:

vi = max
(

0, hi +
∑
j∈I

aijvj

)
∀i ∈ I

In vis, this corresponds to a game of strategic complementarities with lower and

upper bounds (for given µis), i.e. a supermodular game. Therefore, it possesses

a minimum and a maximum equilibrium.

Now, consider an equilibrium with S non defaulting institutions, i.e. with

vS = (v1, · · · , vs) > 0 and let āi = 1−
∑
k∈S

aki. Then,

∑
i∈S

āivi =
∑
i∈S

(
1−

∑
k∈S

aki

)
vi

and given that
∑
i∈S

vi =
∑
i∈S

hi +
∑
i∈S

∑
k∈S

aikvk:

∑
i∈S

āivi =
∑
i∈S

hi

Last, suppose that the minimum equilibrium, say S, is distinct from the

maximum equilibrium, say S ′. Then vS < vS′ (we use here vectorial inequality)

and ∑
i∈S

hi =
∑
i∈S

āivi <
∑
i∈S

āiv
′
i <

∑
i∈S′

āiv
′
i =

∑
i∈S′

hi

However, by construction, for all institutions i ∈ S ′ \ S: hi < 0. Indeed, by (A):

hi > 0⇒ vi > 0 and all institutions with hi > 0 always belong to the surviving

set. Then,
∑
i∈S′

hi <
∑
i∈S

hi, which is in contradiction with (A). The equilibrium

values are then unique.

�

The proof of Lemma A.A.1 rests on the complementarities between

institutions’ values, which, under multiplicity, would imply a minimum and

a maximum configuration solving the system. Now, the total equity invested

in the financial system is identical in both configurations, while there would
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be greater debt repayment in the maximum configuration, due to a larger

number of survivors. This would leave less wealth to distribute in the maximum

configuration than in the minimum configuration, despite the higher values in

the maximum configuration. Hence, the two configurations coincide, implying

uniqueness.25

Proof of Observation 1. Denote p =
∑
k pki. We can write A = PW, where

W is a diagonal matrix with diagonal entry Wii = 1
Pi+e

, with Pi =
∑
k pki.

We have

b = 1 + (PW)1 + (PW)21 + · · ·

That is,

b = 1 + P
(
I + WP + (WP)2 + · · ·

)
W1

Now, WP = Ã = (
pij
Pi+e

). Then,

b = 1 + P(I− Ã)−1W1 (A.3)

Note that, because
∑
k pki =

∑
k pki (= pi),

1

e
(I− Ã)1 = W1 (A.4)

Plugging (A.4) into (A.3), we get

b = 1 +
1

e
P1

25. Complementarity in values also leads to a simple algorithm that pins down the

equilibrium set of surviving institutions. Start with an initial set containing all institutions

with positive constant hi, and compute their values in this initial setting. Then extend the

set by systematically testing neighbors as newcomers, and check whether each newcomer

has a positive value. If so, include it in the set of survivors. This is an efficient algorithm: A

newcomer to the current set of survivors never forces other survivors out of the set, which

thus only expands during the process.
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�

Proof of Theorem 1. The matrix form of the system of equations (8) is given

by:

(I− εβC)z =
e− (ρ− 1)d

1− `β
(I + C)1

i.e.,

(I− εβC)z =
e− (ρ− 1)d

1− `β

[
− 1

εβ
(I− εβC)1 +

1 + εβ
εβ

1

]

i.e., noting that 1
(1−`β)εβ

= 1
r−1 ,

z =
e− (ρ− 1)d

r − 1

[
(1 + εβ)(I− εβC)−11− 1

]

Uniqueness is guaranteed by e − (ρ − 1)d > 0 and εβ > 0 (see Belhaj et al.,

2014), a direct implication from Assumption 3. Assumption 4 guarantees

interiority.

�

Proof of Corollary 1. In our setting εβ → 0 when |`β | is large, that is when

β is low, which corresponds to situations with tight risk-management. The

Corollary stems from observing that

lim
εβ→0

z∗ =
e− (ρ− 1)d

1− `β
(I + C)1 (A.5)

and by remarking that entry i of vector (I + C)1 is equal to bi
mii

. Recalling that

bi = e+pi
e , the result follows.

�

Proof of Proposition 1. We proceed in two steps.

Step 1. Let us first show that the ratio bi/mii is higher for the center of

the star.
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Consider a star network with n agents. We denote by 1 the center of the

star and by 2 the representative periphery. As PT1 = P1 = (pi)i∈I , we have

b1 = e+p1
e , bi = e+p1i

e , and for all i > 1, we have p1i = pi1, a1i = p1i
p1i+e

,

ai1 = p1i
p1+e .

Also, m11 = 1
det(I−A) , and m22 =

1−
∑
i>2 a1iai1

det(I−A) .

Then b1
m11

> b2
m22

if and only if

e+ p1 >
e+ p12

1−
∑
i>2

a1iai1

Or,

(e+ p1)

(
1−

∑
i>2

p2
1i

(p1i + e)(p1 + e)

)
> (e+ p12) (A.6)

Inequality (A.6) is implied by

(e+ p1)

(
1−

∑
i>2

p1i

p1 + e

)
≥ (e+ p12) (A.7)

That is, given that p1 −
∑
i>2

p1i = p12,

(e+ p12) ≥ (e+ p12) (A.8)

which is true. This proves inequality (A.8), thus inequality (A.6).

Step 2. We now prove by induction that z∗RS,1 > z∗RS,2, i.e. that the risk-

taking level is higher for the center of the star than for any of the periphery.

To do so, we simply need to show that ∀q (Cq1)1 > (Cq1)2. Now, by step 1,

we know that (C1)1 > (C1)2. For convenience, let us ψ1 = (C1)1, ψ2 = (C1)2,

and more generally, ψ
(q)
1 = (Cq1)1, ψ

(q)
2 = (Cq1)2 for all q ≥ 1.

Let property P(q) : ϕ
(q)
c > ϕ

(q)
p . Assume P(1), · · · ,P(q − 1). We will prove

P(q). First note that

ψ
(q)
1 = ψ1ψ

(q−1)
1

and

ψ
(q)
2 = c21ψ

(q−1)
1 + (ψ2 − cpc)ψ(q−1)

2
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The inequality ψ
(q)
1 > ψ

(q)
2 then means

(ψ1 − ψ2)ψ
(q−1)
2 > c21

(
ψ

(q−1)
1 − ψ(q−1)

2

)
(A.9)

Now, by P(q − 1), we have

ψ1ψ
(q−2)
2 > c21ψ

(q−2)
1 + (ψ2 − c21)ψ

(q−2)
2

and inequality (A.9) also writes

(ψ1 − ψ2)ψ
(q−1)
2 > c21

(
(ψ1 − ψ2)ϕ

(q−2)
2 − c21

(
ψ

(q−2)
1 − ψ(q−2)

2

))
that is

(ψ1 − ψ2)
(
c21

(
ψ

(q−2)
1 − ψ(q−2)

2

)
+ (ψ2 − c21)ψ

(q−2)
2

)
> −c221

(
ψ

(q−2)
1 − ψ(q−2)

2

)
which holds whenever ψ2 − c21 > 0. Now ψ2 > c21 corresponds to∑

j 6=2m2j

m22
>
m21

m22

which always holds as mij ≥ 0 ∀i, j. Therefore P(q) holds, whenever P(q − 1)

holds. As P(1) holds by Step 1, we have that regulated risk-taking is always

higher for the center of the star than for the periphery.

�

Proof of Proposition 2. The following lemma shows an increasing relationship

between matrix A and matrix C:

Lemma A.A.2. If A′ ≤ A, then C′ ≤ C.

Proof of Lemma A.A.2. The proof relies on the Sherman-Morrison formula,

that states: Suppose Q is an invertible n-square matrix with real entries

and r, s ∈ Rn are column vectors. Then Q + rsT is invertible if and only if
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1 + sTQ−1r 6= 0. If Q + rsT is invertible, its inverse is given by

(Q + rsT )−1 = s−1 − Q−1rsTQ−1

1 + sTQ−1r
(A.10)

We apply this formula with Q = I −A and rsT = −Ω, where Ω = [ωij ]

is such that ωij = ω if (i, j) = (r, s), δij = 0 otherwise. Then matrix Ω has a

single non-zero entry, corresponding to a positive impulsion at the entry (r, s).

It is easily shown that Ω = −rsT for r = (0, · · · , 0, ω, 0, · · · , 0)T with ω at entry

r, and sT = (0, · · · , 0, 1, 0, · · · , 0)T with 1 at entry s.

Applying the formula, noting (I−A)−1 = M and sTMr = −mrsω, we get

(I−A−Ω)−1 = M +
MΩM

1−mrsω

Now the entry (i, j) of matrix MΩM is given by [MΩM]ij = mirmsjω. Then,

[(I−A−Ω)−1]ij = mij +
mirmsjω

1−msrω

We want to prove that the ratio
mij
mii

increases for all i, j when A becomes

A′ = A + Ω. Note that
mij
mii
≤ mij+a

mii+b
if and only if

mij
mii
≤ a

b . Then it is sufficient

to prove that
mij
mii
≤ mirmsjω

mirmsiω
, i.e.

mij

mii
≤ msj

msi
(A.11)

Now the path product property of any inverse M-matrix Y (see for instance

Johnson and Smith, 2007, p. 329) writes

yijyjk ≤ yikyjj (A.12)

Equation (A.11) can be written:

msimij ≤ miimsj

that is, permuting labels i and j:

msjmji ≤ mjjmsi
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and, permuting labels i and q:

mijmjs ≤ mjjmis

which corresponds to the path product property with i, j, s as shown by

equation (A.12). M being an inverse M-matrix, we therefore have that A′ > A

leads to C′ > C, where cij = mij/mii and M = (I−A)−1.

�

By Lemma A.A.2, increasing the integration of the network of cross-shares

induces an increase in the entries of matrix C. The proof of Lemma A.A.2 relies

on the path-product property of inverse M-matrices.26 In particular, for any

p′ ≥ p, we obtain A′ ≥A on a fixed network G. That is, increasing the amount

of investment from any existing investment increases the cross-share matrix.

We can now examine the impact of an increase in the cross-shareholding

matrix A risk-taking under VaR-RM. At the interior equilibrium, the matrix

(I− εβC)−1 is well-defined and nonnegative, so that (I− εβC)−1 =
∑
k≥0

εkβCk.

This implies that increased matrix C induces increased matrix (I− εβC)−1(I +

C). Therefore, the risk-taking z∗ under VaR-RM increases when cross-

shareholding increases.

�

Proof of Proposition 4. Suppose r < 1, that is εβ < 0. The optimal vector of

risk-taking solves

(I + |εβ |C)z =
e− (ρ− 1)d

1− `β
(I + C)1

i.e.,

(I + |εβ |C)z =
e− (ρ− 1)d

(1− `β)|εβ |

[
(I + |εβ |C)1− (1− |εβ |)1

]

26. An M-matrix is a n-by-n matrix with non-positive off-diagonal entries and has an

entry-wise non-negative inverse. In our case, M = (I−A)−1 is then an inverse M-matrix.
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i.e., inverting matrix (I + |εβ |C),

z =
e− (ρ− 1)d

(1− `β)|εβ |

[
1− (1− |εβ |)(I + |εβ |C)−11

]
(A.13)

We are now in position to evaluate how increased integration affects risk-

taking. By Lemma A.A.2, an increase in the shareholding matrix A entails an

increase in matrix C. By equation (A.13), risk-taking is a decreasing function

of the solution of a linear system of substitute interaction, represented here

by the term (I + |εβ |C)−11. It is well-known that, in a classical system of

linear interaction with strategic substitutes, increasing interaction decreases

the average output. Thus, increased matrix C entails a decrease of the average

of the vector (I + |εβ |C)−11, which implies an increase in average risk-taking.

�

Proof of Proposition 5. Consider (A.13), that is

z =
e− (ρ− 1)d

(1− `β)

[
1

|εβ |
1 +

(
1− 1

|εβ |

)
(I + |εβ |C)−11

]

Let

h(|εβ |) =
1

|εβ |
1 +

(
1− 1

|εβ |

)
(I + |εβ |C)−11

Observing that `β is increasing in β and |ε| is decreasing in β (as ε < 0), to

prove that the average risk-taking is increasing in β it is sufficient to show that

h(|ε|) = 1Th(|ε|) is decreasing in |ε|.

Consider |ε′| > |ε|. Note that h(|ε|) = 1
|ε|1 + x(|ε|), where

(I + |ε|C)x(|ε|) =
(

1− 1

|ε|

)
1

Note also that

(
I + |ε|C + (|ε′| − |ε|)C

)
x(|ε′|) =

(
1− 1

|ε′|

)
1
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That is,

(I + |ε|C)x(|ε′|) =
(

1− 1

|ε′|

)
1− (|ε′| − |ε|)Cx(|ε′|)

Then,

(I + |ε|C)(x(|ε′|)− x(|ε|)) =
|ε′| − |ε|
|ε||ε′|

1− (|ε′| − |ε|)Cx(|ε′|)

Let x(|ε|) = 1Tx(|ε|), and let w = (I + |ε|C)−11 ∈ (0, 1); hence w = 1Tw < n.

We then find

x(|ε′|)− x(|ε|) =
|ε′| − |ε|
|ε||ε′|

w− (|ε′| − |ε|)(I + |ε|C)−1Cx(|ε′|)

And summing over entries,

x(|ε′|)− x(|ε|) =
|ε′| − |ε|
|ε||ε′|

w − (|ε′| − |ε|)wTCx(|ε′|)

Hence,

h(|ε′|)− h(|ε|) =
|ε′| − |ε|
|ε||ε′|

(w − n)− (|ε′| − |ε|)wTCx(|ε′|)

We deduce that h(|ε′|)− h(|ε|) < 0.

�

Proof of Proposition 6. Consider that institution i is hit by the shock. By

equation (2), the value of a surviving institution i exerting risk-taking level zi,

and given that others’ VaR-RM risk-taking level, is given by

vi(zi) = fi(zi) + g(zi)

where fi(zi) = (`β − 1)zi+ e− (ρ− 1)d, and where g(zi) =
∑
j 6=i aijv

+
j (z∗j (zi))≥

0.

When there is no network, VaR-RM entails fi(z
0
i ) = 0; While, when there

is a network, VaR-RM entails fi(z
∗
i ) = −g(z∗i ) ≤ 0. Since `β < 1, function fi is

decreasing, which implies that z0
i ≤ z∗i .
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�

Proof of Proposition 7. Under risk-taking vector z, the expected shortfall of

institution i is given by

ESi(z) = E(ν̃i(z)|ν̃i(z) < 0)

Conditional on i suffering the shock (the only possible state for which ν̃i(z)< 0):

ν̃i(z) = (r − 1)
∑
k∈I

mikzk + biη −miizis̃

and denoting

Γi(z) = (r − 1)
∑
k∈I

mikzk + bi(e− (ρ− 1)d)

we have νi = 0 for a realization of the shock s0
i (z) such that

s0
i (z) =

Γi(z)

miizi

The expected value of an institution i, conditional on defaulting, is thus given

by

E(ν̃i|ν̃i < 0) = Γi(z)−miiziE
(
s̃|s̃ > Γi(z)

miizi

)
Hence, the expected shortfall of institution i is written as

ESi(z) = −Γi(z) +miiziE
(
s̃|s̃ > Γi(z)

miizi

)
We explore now the impact of risk-taking behavior z∗, issued from VaR-

RM, on the expected shortfall, for both Pareto and exponential probability

distributions.

• Assume that the shock s̃ has a Pareto density distribution over [s0,+∞):

ha(s) =
asa0
sa+1 for a > 1. Then it is well-known that

E(s̃|s̃ > s0
i (z)) =

as0
i (z)

a− 1
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This implies that

E(ν̃i|ν̃i < 0) = Γi(z)−miizi ·
as0
i (z)

a− 1

which, given miizis
0
i = Γi(z), is simplified as

E(ν̃i|ν̃i < 0) = −Γi(z)

a− 1

We therefore get, for the Pareto distribution of the shock of parameter a,

ESi(z
∗) =

1

a− 1
Γi(z

∗)

Recalling that `β = r− t1−nβq0
and that the FOC defining VaR-RM risk-taking

gives Γi(z
∗) = t1−nβq0

·miiz
∗
i , we deduce

ESi(z
∗) =

( t1−nβq0
a− 1

)
miiz

∗
i

• Assume that the shock s̃ has an exponential density distribution: hλ(s) =

λe−λ(s−s0) for λ > 0. Then

E(s̃|s̃ > s0
i (z)) = s0

i (z) +
1

λ

This implies that

E(ν̃i|ν̃i < 0) = Γi(z)−miizi ·
(
s0
i (z) +

1

λ

)
which, given miizis

0
i (z) = Γi(z), is simplified as

E(ν̃i|ν̃i < 0) = −miizi
λ

We thus obtain, for the exponential distribution of parameter λ,

ESi(z
∗) =

miiz
∗
i

λ

�
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Proof of Proposition 8. Defining υi = 1
1−`β

(
miiηi +

∑
j 6=i
mijηj

)
, the initial z∗

solves

miiz
∗
i − ε

∑
j 6=i

mijz
∗
j = υi

Or, in matrix notation,

Wz∗ = υ

where W is a n-dimensional square matrix such that wii = mii and wij =

−εmij ; and υ = (υi)i∈I .

Suppose now that one 1− `β unit of cash in the external equity of institution

1 (for ease of exposition, all the following addresses institution i). Letting

m1 = (m11,m21, · · · ,mn1)T be the first column of matrix M, the optimal

risk-taking z′∗ then writes

Wz′∗ = υ + m1

and the change in total investment in the risky asset is

1T (z′ − z) = 1TW−1m1

Observing that

m1 = −1

ε


m11

−εm21

· · ·

−εmn1

+
1 + ε

ε


m11

0

· · ·

0


we obtain

W−1m1 = −1

ε


1

0

· · ·

0

+
1 + ε

ε
W−1


m11

0

· · ·

0
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Thus, defining 1TW−1 = (wS1 , w
S
2 , · · · , wSn), so that wSi is the sum of entries of

column i in matrix W−1, we obtain that

1T (z′ − z) = −1

ε
+

(
1 + ε

ε

)
m11w

S
1

The highest effect on total investments in risky assets (1T (z′ − z)) is achieved

by targeting for capital injection the institution with the highest index miiw
S
i .

�

Appendix B: Optimal risk-taking in the absence of VaR-RM

In this appendix, we explore the behavior of financial institutions in the absence

of Value-at-Risk Management. Each institution is risk neutral and maximizes

its expected equity value E(vi).
27 In this setup, obviously firms take more risk

than under VaR-RM. However, the presence of the extreme event may lead

them not to put all resource in the risky asset. We give an upper bound on the

probability of the bad event under which institutions still put all their resource

in the risky asset.

In this setup, the institution’s decision consists in allocating its resources

between the risk free asset and its specific risky asset. Using equation (2), this

comes to:

max
zi∈[0,e+d]

E
(

max
(

(µ̃i − 1)zi + e− (ρ− 1)d+
∑
j 6=i

aij ṽj , 0
))

(B.1)

In the above expression, the realizations of any ṽj is necessarily nonnegative

through equation (2).

Even if the average return on the risky asset is larger than the one of the

risk-free asset, through network effects, risk-neutral institutions may not want

27. Managers’ and equity-holders’ objectives are assumed to be aligned. We thus ignore

agency issues inside the institution.



Belhaj, Bourlès & Deröıan. Risk-taking in financial networks 48

to put all their resource to the risky asset. This phenomenon arises when the

probability that the shock hits the financial system, q0, is high. Indeed, on top

of the classical direct effect (the first term of (B.1), positive under Assumption

2), the level of risk-taking by one institution also impacts its value through

self-loops in the risk-sharing network. This last effect can dominate when the

probability of shock q0 is large. As we want to focus here – consistently with

current regulation – on extreme event that occurs with low probability, we

assume that this q0 is low enough (Assumption B.1), so that the first classical

effect dominates.

Assumption B.1. q0 ≤ 1

1− 1
n

(
r−s−1
r−1

) .

Indeed:

Proposition B.B.1. Under Assumptions 1, 2 and B.1, the expected value of

a financial institution is increasing with its risk-taking level. Then unregulated

institutions optimally allocate all their resources to the risky asset: z∗ui = e+ d

∀i.

By Proposition B.B.1, institutions invest their whole resource in the risky

asset when the probability that the negative shock hits the financial system is

sufficiently low.

Proof of Proposition B.B.1.

Lemma B.B.1. For all µ, z,z′ = (z′i, z−i) such that zi ≤ z′i,

vi(z
′)− vi(z) ≥ (µi − 1)mii(z

′
i − zi)

Proof of Lemma B.B.1. Call I the set of surviving institutions under (µ,z),

I ′ the set of surviving institutions under (µ,z′), and M and M′ the respective
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invert matrices of the systems. We have
vi =

∑
j∈I

mij((µj − 1)zj + e− (ρ− 1)d)

v′i =
∑
j∈I′

m′ij((µj − 1)z′j + e− (ρ− 1)d)

Given the structure of risk of the model, there are three cases to consider.

Either the change in institution i’s risk-taking does not affect the set of

surviving institutions (Case (i)), or it implies one more surviving institution

(Case (ii)), or it implies one less surviving institution (Case (iii)).

Case (i) I = I ′. Then M′ = M, and:

v′i − vi = (µi − 1)mii(z
′
i − zi)

Case (ii): µi > 1 and I ′ = I ∪ {k}. Hence, M ≤ M′(I ′). Consider the level

zci ∈ (zi, z
′
i), at which institution k becomes knife-edge, i.e. such that its value

is equal to zero under both systems I and I ′. Such a value exists by continuity.

Denote by vci the value of institution i at (zci , z−i). Then,

v′i − vi = v′i − vci + vci − vi

Consider vci − vi. We are here in Case (i), and then

vci − vi = (µi − 1)mii(z
′
i − zi)

Now consider v′i − vci . We are here in Case (i) again, but with matrix M′; we

deduce

v′i − vci = (µi − 1)m′ii(z
′
i − zi)

Therefore,

v′i − vi = (µi − 1)
(
m′ii(z

′
i − zci ) +mii(z

c
i − zi)

)
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And since µi > 1 and mii < m′ii, we obtain

v′i − vi ≥ (µi − 1)mii(z
′
i − zi)

Case (iii): µi < 1 and I = I ′ ∪ {k}. Hence, M ≥M′(I); note that µi < 1

cannot induce that higher risk-taking from i hurts institution k’s health.

Consider the level zci ∈ (zi, z
′
i), at which institution k becomes knife-edge, i.e.

such that its value equal to zero under both systems I and I ′ (like Case (ii),

such a value exists by continuity). Replicating the same argument as Case (ii),

we find

v′i − vi = (µi − 1)
(
m′ii(z

′
i − zci ) +mii(z

c
i − zi)

)
And since µi < 1 and mii > m′ii, we obtain

v′i − vi ≥ (µi − 1)mii(z
′
i − zi)

�

By Lemma B.B.1, following an increase in zi (from zi to z′i), the gap

in the expected value of institution i is bounded from below; i.e., denoting

∆zi = z′i − zi and mii = minj 6=im
−j
ii :

E(ṽ′i)− E(ṽi) ≥ (1− q0)(r − 1)mii∆zi +
q0
n

(r − s− 1)mii∆zi +
q0(n− 1)

n
(r − 1)mii∆zi(B.2)

In the RHS, the first term corresponds to the no-shock case, the second

term corresponds to institution i being hit by the shock, and the third term

corresponds to another institutions being hit. Importantly, this is adapted from

Case (ii) in lemma B.B.1 and leads to bound the value from below with the

term mii, which is such that mii < mii (under return greater than unity, the

self-loop of institution i allowing to give a lower bound is that of the smallest

network).
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Since r > 1, from inequality (B.2), a sufficient condition for E(ṽ′i)−E(ṽi)≥ 0

(after dropping the third negative term and the negative quantities associated

with the unit return in both first and second term) is given by

(1− q0)(r − 1) +
q0
n

(r − s− 1) ≥ 0

That is,

q0 ≤
1

1− 1
n

(
r−s−1
r−1

)
�

Appendix C: Multiple shocks

This appendix presents a possible modeling of risk management under

multiple shocks hitting the financial system. The overall model generates

complementarities in risk-taking levels, but multiple shocks bring equilibrium

multiplicity. Even under equilibrium multiplicity, the comparative statics

presented in the single-shock case, like Proposition 2, still generically hold at

least locally.

In this extension, the catastrophic event affects q + 1 institutions at the

same time, with q ∈ {0, 1, · · · , n− 1} (q = 0 in the benchmark model with a

single shock),28 but the shock hits the financial system at random with uniform

probability across institutions. A prudent risk management imposes an upper

bound on the default probability of each bank conditionally on being shocked

and any other q banks shocked and defaulted.29 This objective leads to the

28. For simplicity, this value is assumed to be common knowledge among institutions.

29. Alternatively, firms may want to bound the unconditional probability of default,

rather than the probability of default conditional to the worst state of nature. In this case,

institutions should take into account the default probabilities of other shocked institutions.

This alternative scenario can hardly be explored analytically.
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following managerial constraints:

P(ṽi < 0|vk1 = 0, · · · , vkq = 0) ≤ β ∀i,∀{k1, · · · , kq} ⊂ I \ {i} (C.1)

where all institutions in {k1, · · · , kq} are shocked and defaulted. Hence,

institution i should survive with probability β to a negative shock hitting it

with certainty plus any q other simultaneous shocks hitting other institutions.

We define the set of critical institutions to institution i as the set of institutions

such that the above equation is binding.

Conforming to the worst-case-scenario basis of VaR-RM, critical institutions

to any institution i are those whose dropout hurts institution i’s expected

value the most.30 The set of critical institutions of any institution i, as well as

institution i’s best-response risk-taking, are determined jointly. We define the

finite set Si of all subsets of q distinct institutions out of the set I \ {i}; Si = ∅

in the single-shock case q = 0.

To evaluate how the dropout of a given group of shocked institutions S ∈ Si
affects the value of institution i, we need to take into account that the dropout

restricts the interactions system generating institution i’s best-response risk-

taking. To take into account that a defaulting institution does not transmit

any value to others (particularly a negative value), we introduce the modified

cross-shareholding matrix AS , in which each share invested in a defaulting

institution in the set S is put to zero; that is, for every institution k ∈ I, for all

j ∈ S, aSkj = 0. We denote by CS the analogous matrix to matrix C associated

with cross-shareholding matrix AS . When the shocked institutions are in the

30. In what follows, we will abuse the notation by assuming a single maximizor; under

multiple maximizors, choosing any set among them is indifferent.
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set S, equation (C.1) becomes

q1.P

(r − s̃− 1)zi + e− (ρ− 1)d+
∑

j∈N\S

cSij [(r − 1)zj + e− (ρ− 1)d] < 0

≤ β
(C.2)

where q1 = q0
(
n
q−1

)
(recall that q0 represents the probability that the shocks

hit the financial system).

Recalling that t1−nβq1
is the (1 − nβ

q1
)th quantile of the distribution of s̃

and `β = r − t1−nβq1
, and taking into account that equation (C.2) is binding at

the optimum, we can determine the risk-taking of institution i, z∗i (z−i), which

makes condition (C.1) binding:

z∗i (z−i) =
1

1− `β

(
e− (ρ− 1)d+ min

S∈Si

∑
j∈I\S

cSij

(
(r − 1)zj + e− (ρ− 1)d

))
(C.3)

By equation (C.3), optimal risk-taking decisions are still strategic

complements (as in the case of a single shock). Like the case of a single

shock, the institutions that survive in the network always provide support to

institution i through cross-shareholding links. However, with multiple shocks,

each institution has its own relevant network of complementarities, induced

from the whole cross-shareholding network by dropping its set of critical

institutions.

Even if strategic complementarities resist the introduction of shock

multiplicity, system (C.3) is highly non-linear, and both cycles and equilibrium

multiplicity may emerge, as illustrated by the six-institution example

shown in Fig. C.1. Consider the fixed-participation case and the following

parameters: q = 1, ρ = 1.01, d = 1000, e = 100, l = 0.85, r =

1.02, and p = 5. Consider a sequential best-response algorithm (SBRA)

with discrete periods, where a single institution reacts at a time in any

pre-definite order, starting from any initial risk-taking vector. A Nash

equilibrium is a fixed point of such a SBRA. Then, numerical computations
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Figure C.1. Two shocks in the economy (q = 1). This six-institution network can
generate multiple equilibria.

show that both z∗1 = (697.45, 694.19, 631.33, 663.97, 659.83, 662.67) and z∗2 =

(697.51, 664.49, 664.36, 631.33, 662.67, 659.83) are fixed points of the SBRA. If

equilibrium multiplicity asks for the question of equilibrium selection, there

is no simple answer, because, as suggested in the above examples, equilibria

might not be ranked.

Lastly, even under equilibrium multiplicity, the comparative statics

presented in the single-shock case, like Proposition 2, still hold at least locally;

that is, for any change of parameter sets that keeps unchanged the set of

critical institutions for each institution, the system of interactions describing

institutions’ values, and thus risk-raking levels, is of the same qualitative

nature as for the single-shock benchmark (i.e., complementarities), so our proofs

extend straightforwardly.
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Appendix D: Directed cross-shareholding network

In this section, we allow for cross-investments to be bilaterally asymmetric;

i.e., pij 6= pji is now possible. We examine the impact on risk-taking and on

the comparative statics on integration. Under asymmetric cross-shareholding,

contagion of a single default is possible, thus we assume that bilateral differences

in cross-investment are sufficiently low as compared to leverage ratio so as to

avoid contagion effects (see Assumption D.1).

With asymmetric bilateral relationships, we obtain the following accounting

equation at t = 0:

xi + zi +
∑
j∈I

pij = d+ e+
∑
j∈I

pji (D.1)

meaning that the accounting equation at t = 1 becomes

vi = max
(

(µi − 1)zi + e− (ρ− 1)d+
∑
j∈I

(pji − pij)︸ ︷︷ ︸
Resource effect

+
∑
j 6=i

aijvj , 0
)

(D.2)

The additional term is a resource effect, by which institutions with more

investors from the financial system benefit from more resource to allocate

between risk-free and risky asset.

We impose a generalized version of Assumption 1 as follows.

Assumption D.1. e− (ρ− 1)d+
∑
j∈I(pji − pij) > 0 for all i

Under Assumption D.1, when an institution does not invest in risky assets,

it remains solvent (i.e., vi > 0 when zi = 0). When the network of cross-

shareholding is balanced (
∑
pji =

∑
pij), Assumption D.1 reduces to the

condition e > (ρ− 1)d for all i (i.e., Assumption 1), meaning that banks’ equity

suffices to finance the interest paid on debt. More generally, this assumption

also depends on
∑
pji −

∑
pij , hereafter called the resource effect, which must

be of sufficiently low magnitude.
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Risk-taking under VaR-RM. The expression of interior regulated risk-taking

is the same as that of Theorem 1, except for the resource effect (i.e., the term

(PT −P)1 hereafter):

z∗ =
1

1− `β
(I− εC)−1(I + C)(e− (ρ− 1)d)1 + (PT −P)1) (D.3)

We now analyze the characteristics of the centrality measure z∗ as a function

of the network topology. Equity holdings impact risk-taking twice: (i) through

the shareholding matrix via C, and (ii) through the accounting balance via

(PT −P)1. This second effect arises from differences in the resources that can

be allocated toward the risky asset when investments in equities by institutions,

e+ d+
∑
j∈I pji−

∑
j∈I pij , are not balanced. The entry i of vector (PT −P)1

reflects the difference between the investment of other institutions in institution

i’s equity and the investment of institution i in other institutions’ equities. It

is useful to decompose risk-taking levels into z∗ = z∗RS + z∗RE (where “RS”

stands for the risk-sharing effect and “RE” stands for the resource effect): z∗RS = e−(ρ−1)d
(1−`β) (I− εC)−1(I + C)1

z∗RE = 1
(1−`β)(I− εC)−1(I + C)(PT −P)1

Bow-tie networks. To complement the previous discussion on specific

network structures to directed networks, bow-tie cross-shareholding networks

have been identified in the empirical literature on industrial and finance

economics (see Galeotti and Ghiglino (2021) and references therein; for a

typical example, see the seven-institution network in Galeotti and Ghiglino

(2021) in figure 3 therein).31 They are particularly interesting to illustrate the

powerful role of resource effects in shaping risks. Consider the following network

shown in Fig. D.1: The in-section institution (institution 1) benefits from risk-

31. These networks have three classes of institutions: in-section, core, and out-section. In-

section institutions invest in core institutions, core institutions invest among themselves and

in out-section institutions, and out-section institutions do not invest in other institutions.
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Figure D.1. A bow-tie network with four institutions.

sharing from the core institutions (institutions 2 and 3), but suffers from a

negative resource effect (in that the sum of received investments is lower than

the sum of investment in other institutions); core institutions benefit from

each other only and have a null resource effect; the out-section institution

(institution 4) benefits from no risk-sharing effect, but has a positive resource

effect. Consider ρ= 1.01, d= 100, e= 10, r = 1.02, and p= 5. Then, for l = 0.9,

z∗ ' (113, 193, 193, 190); and for l = 0.8, z∗ ' (48, 91, 91, 95). In this example,

the out-section institution takes more risk than the in-section institution in

both parameter sets. Furthermore, for a sufficiently high shock magnitude,

the out-section institution also takes more risk than the core institutions. This

example illustrates that the resource effect can dominate the risk-sharing effect.

Statics on integration. When the cross-shareholding network is undirected,

there is no resource effect and Proposition 2 implies that integration increases

optimal risk-taking. However, this result does not extend to the directed

network case, that is when shareholding links are not reciprocated, nor when the

amount invested in other institutions varies across institutions. We present an

example where increased integration can decrease the contribution of resource

effects to total optimal risk-taking (1T z∗RE) in directed networks. Consider
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indeed the following cross-shareholding network:

P =


0 p/3 p/3 p/3

0 0 0 0

p 0 0 0

p 0 0 0


Then, the resource effect is given by pγ where γ = (GT −G)1. To simplify,

consider ε = 0, so that z∗ = (I + C)
(
e−(ρ−1)d

1−`β 1 + p
1−`β γ

)
. The effect of p on

the total contribution of resource effect to optimal risk-taking is then captured

by: p/(1 − `β)1TCγ, and can be decreased when the level of integration of

the financial network is increased. Recall here that matrix C depends on

parameter p. Denoting Cp the value of this matrix under parameter p, we

have: 1TC1γ ∼ −0.0328 and 21TC2γ ∼ −0.0789. Therefore, the contribution

of resource effects to total optimal risk-taking is here negative and decreasing

with p. This comes from the negative correlation between the vector of out-

degrees δO = (3, 1, 1, 0)T and the vector of resource effects γ = (−1, 0, 0, 1)T .

To further explore the effect of integration, and to assess whether this

(possibly negative) resource effect can outweigh the positive risk-sharing effect,

we rely on simulations on undirected random graphs. Following Elliott et al.

(2014), we first generate random graphs through the Erdös-Renyi procedure: for

a fixed average degree δ ∈ {1, · · · , n− 1}, each link is created with a probability

of δ/(n− 1). We alternatively generate random networks with power law degree

distributions, using a Barabasi-Albert like procedure (that follows a preferential

attachment mechanism), as follows:

1. Node 2 is attached to node 1 with probability 1. This gives G2 as the empty

matrix plus the bilateral link 21 (g12 = g21 = 1).
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2. For node t = 3, 4, · · · , n, the probability of being linked with nodes j =

1, 2, · · · , t− 1 is equal to

Ptj(τ) =
τ

n− 1
·

δ
(t−1)
j∑t−1

k=1 δ
(t−1)
k

(D.4)

where degrees are defined over the network Gt−1 (i.e. δ(t−1) = Gt−11)

defined as Gt = Gt−1 plus the set of links created at period t. Parameter

τ > 0 controls for the average density of the network. To model directed

networks, we randomly draw the direction on the link, once created.

In the following, we present the results from these two procedures. We

calibrate our simulations with n = 20, ρ = 1.01, r = 1.01, ` = 0.85, d = 1500

and e= 100. Figure D.2 depicts the effect of integration on average optimal risk-

taking. We focus on P such that P = pG, with G a binary network satisfying

GT = G; we define (δi)i∈I = G1 as institution i’s degree. With the above set

of parameters, and the two forms of random network, we draw 1, 000 networks

for each value of p in the fixed participation case (pij = p · gij), and plot the

average optimal risk-taking among banks and among runs. Figure D.2 presents

the results for an average degree δ = 5 under the Erdös-Renyi procedure and

an average density τ = δ · n = 100 under the Barabasi-Albert procedure.32

Figure D.2 highlights several features of our model. First, it illustrates that

the cross-shareholding network has significant effects on average risk-taking. In

our parameter set, average z∗i can increase by more than 50% with respect to

that of isolated banks. Second, it shows that the positive risk-sharing effect of

integration dominates on average the resource effect for random graphs, leading

to an increase in average risk-taking. Third, it confirms that heterogeneity in

network positions (which is higher under the Barabasi-Albert procedure) tends

to decrease average risk-taking through resource effects, and dampens the effect

32. The average number of links is then the same under both procedures.
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Figure D.2. The effect of integration on average optimal risk-taking

of integration. Overall, Figure D.2 suggests that integration has a monotonic

impact on optimal risk-taking.33

33. Elliott et al. (2014) find (different) non-linear effects of integration and diversification

on contagion.
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